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Abstract

This paper develops the method of matching as an econometric evaluation estimator. A rigorous

distribution theory for kernel-based matching is presented. The method of matching is extended

to more general conditions than the ones assumed in the statistical literature on the topic. We

focus on the method of propensity score matching and show that it is not necessarily better, in
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the sense of reducing the variance of the resulting estimator, to use the propensity score method

even if propensity score is known. We extend the statistical literature on the propensity score by

considering the case when it is estimated both parametrically and nonparametrically. We examine

the bene¯ts of separability and exclusion restrictions in improving the e±ciency of the estimator.

Our methods also apply to the econometric selection bias estimator.

JEL Number: C10
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1 Introduction

Matching is a widely-used method of evaluation. It is based on the intuitively attractive idea of

contrasting the outcomes of program participants (denoted Y1) with the outcomes of \comparable"

nonparticipants (denoted Y0). Di®erences in the outcomes between the two groups are attributed to

the program.

Let I0 and I1 denote the set of indices for nonparticipants and participants, respectively. The

following framework describes conventional matching methods as well as the smoothed versions of

these methods analyzed in this paper. To estimate a treatment e®ect for each treated person i 2 I1,

outcome Y1i is compared to an average of the outcomes Y0j for matched persons j 2 I0 in the untreated

sample. Matches are constructed on the basis of observed characteristics X in Rd. Typically, when

the observed characteristics of an untreated person are closer to those of the treated person i 2 I1,

using a speci¯c distance measure, the untreated person gets a higher weight in constructing the match.

The estimated gain for each person i in the treated sample is

Y1i ¡
X

j2I0
WN0;N1(i; j)Y0j ; (1)

where WN0;N1(i; j) is usually a positive valued weight function, de¯ned so that for each i 2 I1;

P
j2I0 WN0;N1(i; j) = 1; and N0 and N1 are the number of individuals in I0 and I1, respectively. The

choice of a weighting function re°ects the choice of a particular distance measure used in the matching

method, and the weights are based on distances in the \X" space. For example, for each i 2 I1 the
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nearest-neighbor method selects one individual j 2 I0 as the match whose Xj is the \closest" value

to Xi, in some metric. The kernel methods developed in this paper construct matches using all

individuals in the comparison sample and downweighting \distant" observations.

The widely-used evaluation parameter on which we focus in this paper is the mean e®ect of

treatment on the treated for persons with characteristics X:

E(Y1 ¡ Y0 j D = 1; X); (P-1)

where D = 1 denotes program participation. Heckman (1997) and Heckman and Smith (1997) discuss

conditions under which this parameter answers economically interesting questions. For a particular

domain X for X, this parameter is estimated by

X

i2I1
wN0;N1(i)[Y1i ¡

X

j2I0
WN0;N1(i; j)Y0j] (2)

where di®erent values of wN0;N1(i) may be used to select di®erent domains X or to account for

heteroskedasticity in the treated sample. Di®erent matching methods are based on di®erent weighting

functions fwN0;N1(i)g and fWN0;N1(i; j)g.

The method of matching is intuitively appealing and is often used by applied statisticians, but not

by economists. This is so for four reasons. First, it is di±cult to determine if a particular comparison

group is truly comparable to participants (i.e. would have experienced the same outcomes as partici-

pants had they participated in the program). An ideal social experiment creates a valid comparison

group. But matching on the measured characteristics available in a typical nonexperimental study is

not guaranteed to produce such a comparison group. The published literature presents conditional
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independence assumptions under which the matched group is comparable, but these are far stronger

than the mean-independence conditions typically invoked by economists. Moreover, the assumptions

are inconsistent with many economic models of program participation in which agents select into the

program on the basis of unmeasured components of outcomes unobserved by the econometrician. Even

if conditional independence is achieved for one set of X variables, it is not guaranteed to be achieved

for other sets of X variables including those that include the original variables as subsets. Second, if

a valid comparison group can be found, the distribution theory for the matching estimator remains

to be established for continuously distributed match variables X.1

Third, most of the current econometric literature is based on separability between observables and

unobservables and on exclusion restrictions that isolate di®erent variables that determine outcomes

and program participation. Separability permits the de¯nition of parameters that do not depend

on unobservables. Exclusion restrictions arise naturally in economic models, especially in dynamic

models where the date of enrollment into the program di®ers from the dates when consequences of the

program are measured. The available literature on matching in statistics does not present a framework

that incorporates either type of a priori restriction.

Fourth, matching is a data-hungry method. With a large number of conditioning variables, it is

easy to have many cells without matches. This makes the method impractical or dependent on the

use of arbitrary sorting schemes to select hierarchies of matching variables. (See, e.g. Westat, 1980,

1982, and 1984.) In an important paper, Rosenbaum and Rubin (1983) partially solve this problem.

They establish that if matching on X is valid, so is matching solely on the probability of selection

into the program Pr(D = 1jX) = P (X). Thus a multidimensional matching problem can be recast

1When the match variables are discrete, the matching estimator for each cell is a mean and consistency and asymptotic
normality of the matching estimator are easily established.
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as a one-dimensional problem and a practical solution of the curse of dimensionality for matching is

possible.2

Several limitations hamper the practical application of their theoretical result. Their theorem

assumes that the probability of selection is known and is not estimated. It is also based on strong

conditional independence assumptions that are di±cult to verify in any application and are uncon-

ventional in econometrics. They produce no distribution theory for their estimator.

In this paper we ¯rst develop an econometric framework for matching that allows us to incorporate

additive separability and exclusion restrictions. We then provide a sampling theory for matching from

a nonparametric vantage point. Our distribution theory is derived under weaker conditions than the

ones currently maintained in the statistical literature on matching. We show that the fundamental

identi¯cation condition of the matching method for estimating (P-1) is

E(Y0 j D = 1;X) = E(Y0 j D = 0;X)

whenever both sides of this expression are well de¯ned. In order for both sides to be well de¯ned

simultaneously for all X it is usually assumed that 0 < P (X) < 1 so that Supp(X j D = 1) =

Supp(X j D = 0). As Heckman, Ichimura, Smith, Todd (1994, revised 1996a), Heckman, Ichimura,

Smith and Todd (1996c) and Heckman, Ichimura and Todd (1997) point out, this condition is not

appropriate for important applications of the method. In order to meaningfully implement matching

it is necessary to condition on the support common to both participant and comparison groups S,

2They term P (X) the propensity score. For the relationship between propensity score methods and selection models,
see Heckman and Robb (1986) or Heckman, Ichimura, Smith and Todd (1994, revised 1996a).
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where

S = Supp(X j D = 1) \ Supp(X j D = 0)

and to estimate the region of common support. Equality of the supports need not hold a priori al-

though most formal discussions of matching assumes that it does. Heckman, Ichimura, Smith and

Todd (1996) and Heckman, Ichimura and Todd (1997) report the empirical relevance of this point

for evaluating job training programs. Invoking assumptions that justify the application of nonpara-

metric kernel regression methods to estimate program outcome equations, maintaining weaker mean

independence assumptions compared to the conditional independence assumptions used in the litera-

ture, and conditioning on S, we produce an asymptotic distribution theory for matching estimators

when regressors are either continuous, discrete or both. This theory is general enough to make the

Rosenbaum-Rubin theorem operational in the commonly-encountered case where P (X) is estimated

either parametrically or nonparametrically.

With a rigorous distribution theory in hand, we address a variety of important questions that arise

in applying the method of matching: (1) We ask, if one knew the propensity score, P (X), would one

want to use it instead of matching on X? (2) What are the e®ects on asymptotic bias and variance

if we use an estimated value of P? We address this question both for the case of parametric and

nonparametric P (X). Finally, we ask (3) what are the bene¯ts, if any, of econometric separability

and exclusion restrictions on the bias and variance of matching estimators?

The structure of this paper is as follows. Section 1 states the evaluation problem and the parame-

ters identi¯ed by the analysis of this paper. Section 2 discusses how matching solves the evaluation

problem. We discuss the propensity score methodology of Rosenbaum and Rubin (1983). We empha-

size the importance of common support condition assumed in the literature and develop an approach
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that does not require it. Section 3 contrasts the assumptions used in matching with the separability

assumptions and exclusion restrictions conventionally used in econometrics. A major goal of this

paper is to unify the matching literature with the econometrics literature. Section 4 investigates a

central issue in the use of propensity scores. Even if the propensity score is known, is it better, in

terms of reducing the variance of the resulting matching estimator, i.e. to condition on X or P (X)?

There is no unambiguous answer to this question. Section 5 presents a basic theorem that provides the

distribution theory for kernel matching estimators based on estimated propensity scores. In Section

6, these results are then applied to investigate the three stated questions. Section 7 summarizes the

paper.

2 The Evaluation Problem and The Parameters of Interest

Each person can be in one of two possible states, 0 and 1; with associated outcomes (Y0; Y1), corre-

sponding to receiving no treatment or treatment respectively. For example, \treatment" may represent

participation in the social program, such as the job training program evaluated in our companion pa-

per where we apply the methods developed in this paper. (Heckman, Ichimura and Todd, 1997). Let

D = 1 if a person is treated; D = 0 otherwise. The gain from treatment is ¢ = Y1 ¡ Y0. We do not

know ¢ for anyone because we observe only Y = DY1 + (1 ¡ D)Y0, i :e: either Y0 or Y1.

This fundamental missing data problem cannot be solved at the level of any individual. Therefore,

the evaluation problem is typically reformulated at the population level. Focusing on mean impacts

for persons with characteristics X, a commonly-used parameter of interest for evaluating the mean

impact of participation in social programs is (P-1). It is the average gross gain from participation in

the program for participants with characteristics X. If the full social cost per participant is subtracted
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from (P-1), and the no treatment outcome for all persons closely approximates the no program outcome

then the net gain informs us of whether the program raises total social output compared to the no

program state for the participants with characteristics X.3

The mean E(Y1 j D = 1; X) can be identi¯ed from data on program participants. Assumptions

must be invoked to identify the counterfactual mean E(Y0 j D = 1;X), the no-treatment outcome

of program participants. In the absence of data from an ideal social experiment, the outcome of

self-selected nonparticipants E(Y0 j D = 0; X) is often used to approximate E(Y0 j D = 1; X). The

selection bias that arises from making this approximation is

B(X) = E(Y0 j D = 1; X) ¡ E(Y0 j D = 0; X):

Matching on X, or regression adjustment of Y0 using X, is based on the assumption that B(X) = 0

so conditioning on X eliminates the bias.

Economists have exploited the idea of conditioning on observables using parametric or nonpara-

metric regression analysis. (Barnow, Cain and Goldberger, 1980; Barros, 1986; Heckman and Robb,

1985, 1986.) Statisticians more often use matching methods, pairing treated persons with untreated

persons of the same X characteristics (Cochrane and Rubin, 1973).

The literature on program evaluation gives two distinct responses to the problem of estimating (P-

1) with continuous conditioning variables. The ¯rst borrows from the kernel regression literature. It

uses a smoothing procedure that borrows strength from adjacent values of a particular value of X = x

and produces uniformly consistent estimators of (P-1) at all points of the support for the distributions

3See Heckman (1997) or Heckman and Smith (1997) for a precise statement of when this parameter answers an
interesting economic evaluation question.
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of X given D = 1 or D = 0. (See Heckman, Ichimura, Smith and Todd, 1994 revised 1996b or

Heckman, Ichimura and Todd,1993, forthcoming 1997). Parametric assumptions about E(Y0 j D =

1;X) play the same role as smoothing assumptions, and in addition allow analysts to extrapolate

out of the sample for X. Unless the class of functions to which (P-1) may belong is restricted to be

smaller than the ¯nite-order continuously-di®erentiable class of functions, the convergence rate of an

estimator of (P-1) is governed by the number of continuous variables included in X (Stone, 1982).

The second response to the problem of constructing counterfactuals abandons estimation of (P-1)

at any point of X and instead estimates an average of (P-1) over an interval of X values. Commonly-

used intervals include Supp(XjD = 1), or subintervals of the support corresponding to di®erent groups

of interest. The advantage of this approach is that the averaged parameter can be estimated with

rate N¡1=2, where N is sample size, regardless of the number of continuous variables in X when the

underlying functions are smooth enough. Averaging the estimators over intervals of X produces a

consistent estimator of

M(S) = E(Y1 ¡ Y0 j D = 1;X 2 S); (P-2)

with a well-de¯ned N¡1=2 distribution theory where S is a subset of Supp(XjD = 1). There is con-

siderable interest in estimating impacts for groups so (P-2) is the parameter of interest in conducting

an evaluation. In practice both pointwise and setwise parameters may be of interest. Historically,

economists have focused on estimating (P-1) and statisticians have focused on estimating (P-2), usu-

ally de¯ned over broad intervals of X values, including Supp(XjD = 1). In this paper, we invoke

conditions su±ciently strong to consistently estimate both (P-1) and (P-2).
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3 How Matching Solves the Evaluation Problem

Using the notation of Dawid (1979) let

(Y0; Y1) ?? DjX (A-1)

denote the statistical independence of (Y0; Y1) and D conditional on X. An equivalent formulation of

this condition is

Pr(D = 1 j Y0; Y1;X) = Pr(D = 1 j X):

This is a non-causality condition that excludes the dependence between potential outcomes and

participation that is central to econometric models of self selection. (See Heckman and Honor¶e, 1990.)

Rosenbaum and Rubin (1983), henceforth denoted RR, establish that, when (A-1) and

0 < P (X) < 1 (A-2)

are satis¯ed, (Y0; Y1) ?? DjP (X); where P (X) = Pr(D = 1jX): Conditioning on P (X) balances the

distribution of Y0 and Y1 with respect to D. The requirement (A-2) guarantees that matches can be

made for all values of X. RR called condition (A-1) an \ignorability" condition for D, and they call

(A-1) and (A-2) together a \strong ignorability" condition.

When the strong ignorability condition holds, one can generate marginal distributions of the

counterfactuals:

F0(y0 j D = 1; X) and F1(y1 j D = 0; X)

but one cannot estimate the joint distribution of (Y0; Y1), F (y0; y1 j D;X), without making further
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assumptions about the structure of outcome and program participation equations.4

If P (X) = 0 or P (X) = 1 for some values of X, then one cannot use matching conditional on

those X values to estimate a treatment e®ect. Persons with such X characteristics either always

receive treatment or never receive treatment, so matches from both D = 1 and D = 0 distributions

cannot be performed. Ironically, missing data give rise to the problem of causal inference, but missing

data, i.e. the unobservables producing variation in D conditional on X, are also required to solve

the problem of causal inference. The model predicting program participation should not be too good

so that P (X) = 1 or 0 for any X. Randomness, as embodied in condition (A-2), guarantees that

persons with the same characteristics can be observed in both states. This condition says that for any

measurable set A, Pr(X 2 AjD = 1) > 0 if and only if Pr(X 2 AjD = 0) > 0, so the comparison of

conditional means is well de¯ned.5 A major ¯nding in Heckman, Ichimura, Smith, Todd (1994, revised

1996a,b,c) is that in their sample these conditions are not satis¯ed, so matching is only justi¯ed over

the subset Supp(XjD = 1)\ Supp(XjD = 0).

Note that under assumption (A-1)

E(Y0jD = 1;X 2 S) = E[E(Y0jD = 1;X)jD = 1;X 2 S]

= E[E(Y0jD = 0;X)jD = 1;X 2 S]

so E(Y0 j D = 1;X 2 S) can be recovered from E(Y0 j D = 0;X) by integrating over X using the

distribution of X given D = 1, restricted to S. Note that, in principle, both E(Y0 j X; D = 0)

4Heckman, Smith and Clements (1993; revised, 1997) and Heckman and Smith (1997) analyze a variety of such
assumptions.

5Thus, the implication of 0 < Pr(D = 1jX) < 1 is that conditional measures of X given D = 0 and that given
D = 1 are absolutely continuous with respect to each other. These dominating measure conditions are standard in the
matching literature.
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and the distribution of X given D = 1 can be recovered from random samples of participants and

nonparticipants.

It is important to recognize that unless the expectations are taken on the common support of S,

the second equality does not necessarily follow. While E(Y0 j D = 0; X) is always measurable with

respect to the distribution of X given D = 0, (¹(XjD = 0)), it may not be measurable with respect

to the distribution of X given D = 1, (¹(XjD = 1)). Invoking assumption (A-2) or conditioning on

the common support S solves the problem because ¹(XjD = 0) and ¹(XjD = 1), restricted to S, are

mutually absolutely continuous with respect to each other. In general, assumption (A-2) may not be

appropriate in many empirical applications. (See Heckman, Ichimura, and Todd, 1997 or Heckman,

Ichimura, Smith and Todd, 1996a,b,c.)

The sample counterpart to the population requirement that estimation should be over a common

support arises when the set S is not known. In this case, we need to estimate S. Since the estimated

set, Ŝ; and S inevitably di®er, we need to make sure that asymptotically the points at which we

evaluate the conditional mean estimator of E(Y0 j D = 0;X) are in S. We use the \trimming"

method developed in our companion paper (Heckman, Ichimura, Smith, Todd, 1996b) to deal with

the problem of determining the points in S. Instead of imposing (A-2), we investigate regions S,

where we can reasonably expect to learn about E(Y1 ¡ Y0jD = 1; S).

Conditions (A-1) and (A-2) which are commonly invoked to justify matching, are stronger than

what is required to recover E(Y1 ¡ Y0 j D = 1;X) which is the parameter of interest in this paper.

We can get by with the weaker condition since our objective is construction of the counterfactual
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E(Y0jX; D = 1)

Y0 ?? D j X; (A-3)

which implies that Pr(Y0 < tjD = 1;X) = Pr(Y0 < tjD = 0;X) for X 2 S.

In this case, the distribution of Y0 given X for participants can be identi¯ed using data only

on nonparticipants provided that X 2 S. From these distributions, one can recover the required

counterfactual mean E(Y0 j D = 1;X) for X 2 S. Note that condition (A-3) does not rule out the

dependence of D on Y1 or on ¢ = Y1 ¡ Y0 given X.6

For identi¯cation of the mean treatment impact parameter (P-1), an even weaker mean indepen-

dence condition su±ces:

E(Y0jD = 1;X) = E(Y0jD = 0;X) for X 2 S: (A-10)

Under this assumption, we can identify E(Y0jD = 1; X) for X 2 S, the region of common support.7

Mean independence conditions are routinely invoked in the econometrics literature.8

Under conditions (A-1) and (A-2), conceptually di®erent parameters such as the mean e®ect of

treatment on the treated, the mean e®ect of treatment on the untreated, or the mean e®ect of randomly

assigning persons to treatment, all conditional on X, are the same. Under assumptions (A-3) or (A-10),

they are distinct.9

6By symmetric reasoning, if we postulate the condition Y1 ?? DjX and (A-2), then Pr(D = 1jY1;X) = Pr(D = 1jX),
so selection could occur on Y0 or ¢, and we can recover Pr(Y1 < tjD = 0;X). Since Pr(Y0 < tjD = 0;X) can be
consistently estimated, we can recover E(Y1 ¡ Y0jD = 0;X).

7We can further identify E(Y1 ¡ Y0jD = 0) if we assume E(Y1jD = 1;X) = E(Y1jD = 0;X) for X in S.
8See, for example, Barnow, Cain and Goldberger (1980) or Heckman and Robb (1985, 1986).
9See Heckman (1990) for a discussion of the three parameters. See also Heckman and Smith (1997).
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Under these weaker conditions, we demonstrate below that it is not necessary to make assumptions

about speci¯c functional forms of outcome equations or distributions of unobservables that have made

the empirical selection bias literature so controversial. What is controversial about these conditions

is the assumption that the conditioning variables available to the analyst are su±ciently rich to

justify application of matching. To justify the assumption, analysts implicitly make conjectures about

what information goes into the decision sets of agents, and how unobserved (by the econometrician)

relevant information is related to observables. (A-1) rules out dependence of D on Y0 and Y1 and so is

inconsistent with the Roy model of self selection. See Heckman (1997) or Heckman and Smith (1997)

for further discussion.

4 Separability and Exclusion Restrictions

In many applications in economics, it is instructive to partition X into two not-necessarily mutually

exclusive sets of variables, (T;Z), where the T variables determine outcomes:

Y0 = g0(T ) + U0 (3a)

Y1 = g1(T ) + U1 (3b)

and the Z variables determine program participation

Pr(D = 1 j X) = Pr(D = 1 j Z) = P (Z): (4)

Thus in a panel data setting Y1 and Y0 may be outcomes measured in periods after program partic-

ipation decisions are made, so that Z and T may contain distinct variables although they may have
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some variables in common. Di®erent variables may determine participation and outcomes, as in the

labor supply and wage model of Heckman (1974).

Additively-separable models are widely used in econometric research. A major advantage of such

models is that any bias arising from observing Y0 or Y1 by conditioning on D is con¯ned to the \error

term" provided that one also conditions on T , e.g. E(Y0jD = 1;X) = g0(T )+ E(U0jD = 1; Z) and

E(Y1jD = 1; X) = g0(T )+ E(U0jD = 1; Z). Another major advantage of such models is that they

permit an operational de¯nition of the e®ect of a change in T holding U constant. Such e®ects are

derived from the g0 and g1 functions.

The Rosenbaum-Rubin Theorem (1983) does not inform us about how to exploit additive separa-

bility or exclusion restrictions. The evidence reported in Heckman, Ichimura, Smith and Todd (1994,

revised 1996b), reveals that the no-training earnings of persons who chose to participate in a training

program, Y0, can be represented in the following way:

E(Y0 j D = 1;X) = g0(T ) + E(U0 j P (Z));

where Z and T contain some distinct regressors. This representation reduces the dimension of the

matching or nonparametric regression problem if the dimension of Z is two or larger. Currently-

available matching methods do not provide a way to exploit such information about the additive

separability of the model or to exploit the information that Z and T do not share all of their elements

in common.

This paper extends the insights of Rosenbaum and Rubin (1983) to the widely-used model of

program participation and outcomes given by equations (3a) and (3b). Thus, instead of (A-1) or
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(A-3), we consider the case where

U0 ?? DjX: (A-4a)

Invoking the exclusion restrictions P (X) = P (Z) and using an argument analogous to Rosenbaum

and Rubin (1983), we obtain

E fD j U0; P (Z)g = E fE(D j U0;X) j U0; P (Z)g

= E fP (Z) j U0; P (Z)g = P (Z) = E fD j P (Z)g

so that

U0 ?? D j P (Z): (A-4b)

Under condition (A-4a) it is not necessarily true that (A-1) or (A-3) are valid but it is obviously true

that

[Y0 ¡ g0(T )] ?? DjP (Z):

In order to identify the mean treatment e®ect on the treated, it is enough to assume that

E(U0 j D = 1; P (Z)) = E(U0 j D = 0; P (Z)) (A-4b0)

instead of (A-4a) or (A-4b).

Observe that (A-4a), (A-4b), and (A-4b0) do not imply that E(U0 j P (Z)) = 0 or that E(U1 j
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P (Z)) = 0. They only imply that the distributions of the unobservables are the same in populations

of D = 1 and D = 0, once one conditions on P (Z). Y0 and Y1 must be adjusted to eliminate the

e®ects of T on outcomes. Only the residuals can be used to exploit the RR conditions. Thus P (Z) is

not, in general, a valid instrumental variable.

In order to place these results in the context of classical econometric selection models, consider

the following index model setup

Y0 = g0(T ) + U0

D = 1 if Ã(Z) ¡ º ¸ 0

= 0 otherwise.

If Z and º are independent, then P (Z) = Fº(Ã(Z)), where Fº(¢) is the distribution function of º. In

this case identi¯cation condition (A-4b0) implies

E [U0 j D = 1; Fº(Ã(Z))] = E [U0 j D = 0; Fº(Ã(Z))] (*)

or when Fº is strictly increasing,

Z 1

¡1

Z Ã(Z)
¡1

U0f(U0; º j Ã(Z))dºdU0=Fº(Ã(Z))

=
Z 1

¡1

Z 1

Ã(Z)
U0f(U0; º j Ã(Z))dºdU0= [1 ¡ Fº(Ã(Z))] :
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If, in addition, Ã(Z) is independent of (U0; º), and E(U0) = 0, condition (*) implies

Z 1

¡1

Z Ã(Z)

¡1
U0f(U0; º)dºdU0 = 0;

for any Ã(Z), which in turn implies E(U0 j º = s) = 0 for any s when Ã(Z) changes smoothly over

the real line. Hence under these conditions our identi¯cation condition implies there is no selection on

unobservables as de¯ned by Heckman and Robb (1985, 1986). However, Ã(Z) may not be statistically

independent of (U0; º). Thus under the conditions assumed in the conventional selection model,

the identi¯cation condition (A-4b0) may or may not imply selection on unobservables depending on

whether Ã(Z) is independent of (U0; º) or not.

5 Estimating The Mean E®ect of Treatment: Should One Use the

Propensity Score or Not?

Under (A-10) with S = Supp(XjD = 1) and random sampling across individuals, if one knew E(Y0jD =

0;X = x), a consistent estimator of (P-2) is

¢̂X = N¡1
1

X

i2I1
[Y1;i ¡ E(Y0jD = 0; X = Xi)]:

where I1 is the set of i indices corresponding to observations for which Di = 1. If we assume

E(Y0jD = 1; P (X)) = E(Y0jD = 0; P (X)) for X 2 Supp(P (X)jD = 1); (A-100)
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which is an implication of (A-1), and E(Y0jD = 0; P (X) = p) is known, the estimator:

¢̂P = N¡1
1

X

i2I1
[Y1;i ¡ E(Y0 j D = 0; P (X) = P (Xi))]

is consistent for E(¢ j D = 1).

We compare the e±ciency of the two estimators, ¢̂P and ¢̂X . We show that neither is necessarily

more e±cient than the other. Neither estimator is feasible because both assume the conditional mean

function and P (X) are known whereas in practice they need to be estimated. However, the analysis of

this case is of interest because the basic intuition from the simple theorem established below continues

to hold when the conditional mean function and P (X) are estimated.

Theorem 1 Assume

(i) (A-10) and (A-100) hold for S = Supp(XjD = 1).

(ii) fY1i; Xigi2I1 are independent and identically distributed, and

(iii) 0 <E(Y 2
0 )¢E(Y 2

1 ) < 1:

Then ¢̂X and ¢̂P are both consistent estimators of (P-2) with asymptotic distributions that are

normal with mean 0 and asymptotic variances VX and VP , respectively, where

VX = E[Var(Y1 j D = 1;X) j D = 1] + Var[E(Y1 ¡ Y0 j D = 1; X) j D = 1]

and

VP = E[Var(Y1 j D = 1; P (X)) j D = 1] + Var[E(Y1 ¡ Y0 j D = 1; P (X)) j D = 1] 2:
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The theorem directly follows from the central limit theorem for iid sampling with ¯nite second moment

and for the sake of brevity its proof is deleted.

Observe that

E[Var(Y1 j D = 1;X) j D = 1] · E[Var(Y1 j D = 1; P (X)) j D = 1]

because X is in general a better predictor than P (X) but

Var[E(Y1 ¡ Y0 j D = 1;X) j D = 1] ¸ Var[E(Y1 ¡ Y0 j D = 1; P (X)) j D = 1]

because vector X provides a ¯ner conditioning variable than P (X). In general, there are both costs

and bene¯ts of conditioning on a random vector X rather than P (X). Using this observation, we can

construct examples both where VX · VP and where VX ¸ VP .

Consider ¯rst the special case where the treatment e®ect is constant, that is E(Y1¡Y0 j D = 1;X)

is constant. An iterated expectation argument implies that E(Y1 ¡Y0 j D = 1; P (X)) is also constant.

Thus, the ¯rst inequality, VX · VP holds in this case. On the other hand, if Y1 = m(P (X)) + U for

some measurable function m (¢) and U and X are independent, then

VX ¡ VP = Var[E(Y0 j D = 1;X) j D = 1] ¡ Var[E(Y0 j D = 1; P (X)) j D = 1]

which is non-negative because vector X provides a ¯ner conditioning variable than P (X). So in this

case VX ¸ VP .

When the treatment e®ect is constant as in the conventional econometric evaluation models, there
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is only an advantage of conditioning on X rather than on P (X) and there is no cost.10 When the

outcome Y1 depends on X only through P (X), there is no advantage to conditioning on X over

conditioning on P (X):

Thus far we assume that P (X) is known. In the next section, we investigate the more realistic

situation where it is necessary to estimate both P (X) and the conditional means. In this more realistic

case, the trade-o® between the two terms in VX and VP persists.11

When we need to estimate P (X) or E(Y0 j D = 0; X), the dimensionality of the X is a major

drawback to the practical application of the matching method or to the use of conventional nonpara-

metric regression. Both are data-hungry statistical procedures. For high dimensional X variables,

neither method is feasible in samples of the size typically available to social scientists. Sample sizes

per cell become small for matching methods with discrete X's. Rates of convergence slow down in

high-dimensional nonparametric methods. In a parametric regression setting, one may evade this

problem by assuming functional forms for E(U0 j X) (see e.g. Barnow, Cain and Goldberger, 1980

and the discussion in Heckman and Robb, 1985, 1986), but this approach discards a major advan-

tage of the matching method because it forces the investigator to make arbitrary assumptions about

functional forms of estimating equations.

Conditioning on the propensity score avoids the dimensionality problem by estimating the mean

function conditional on a one-dimensional propensity score P (X). However, in practice one must

10Heckman (1992), Heckman and Smith (1993) and Heckman, Smith and Clements (1993, 1997) discuss the central
role of the homogeneous response assumption in conventional econometric models of program evaluation.

11If we knew E(Y1jD = 1; P (X) = p) as well, the estimator

N¡11

X

i2I1

[E(Y1jD = 1; P (X) = P (Xi))¡E(Y0jD = 0; P (X) = P (Xi))]

would be more e±cient than ¢P . In practical applications, we don't know either E(Y1jD = 1; P (X) = p) or E(Y0jD =
0; P (X) = p) so this point is only a theoretical curiosum and is not investigated further.
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estimate the propensity score. If it is estimated nonparametrically, we again encounter the curse of

dimensionality. The asymptotic distribution theorem below shows that the bias and the asymptotic

variance of the estimator of the propensity score a®ects the asymptotic distribution of the averaged

matching estimator more the larger the e®ect of a change in the propensity score on the conditional

means of outcomes.

6 Asymptotic Distribution Theory For Kernel-Based Matching Es-

timators

We present an asymptotic theory for our estimator of treatment e®ect (P-2) using either identifying

assumption (A-3) or (A-4b0). The proof justi¯es the use of estimated P values under general conditions

about the distribution of X.

We develop a general asymptotic distribution theory for kernel-regression-based and local-polynomial-

regression-based matching estimators of (P-2). Let T and Z be not necessarily mutually exclusive

subvectors of X, as before. When a function depends on a random variable, we use corresponding

lower case letters to denote its argument, for example, g(t; p) = E(Y0jD = 1; T = t; P (Z) = p) and

P (z) = Pr(D = 1jZ = z). Although not explicit in the notation, it is important to remember that

g(t; p) refers to the conditional expectation conditional on D = 1 as well as T = t and P (Z) = p.

We consider estimators of g(t; P (z)) where P (z) must be estimated. Thus we consider an estimator

ĝ(t; P̂ (z)), where P̂ (z) is an estimator of P (z). The general class of estimators of (P-2) that we analyze
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are of the form:

¢̂ =
N¡1

1
P
i2I1

[Y1;i ¡ ĝ(Ti; P̂ (Zi))]I(Xi 2 Ŝ)

N¡1
1

P
i2I1

I(Xi 2 Ŝ)
; (6)

where I(A) = 1 if A holds and = 0 otherwise and Ŝ is an estimator of S, the region of overlapping

support, where S =SuppfXjD = 1g\SuppfXjD = 0g:

To establish the properties of matching estimators of the form ¢̂ based on di®erent estimators

of P (z) and g(t; P (z)), we use a class of estimators which we call asymptotically linear estimators

with trimming . We analyze their properties by proving a series of lemmas and corollaries leading

up to Theorem 2. With regard to the estimators P̂ (z) and ĝ(t; p), we only assume that they can be

written as an average of some function of the data plus residual terms with appropriate convergence

properties that are speci¯ed below. We start by de¯ning the class of asymptotically linear estimators

with trimming.

De¯nition 1 An estimator µ̂(x) of µ(x) is an asymptotically linear estimator with trimming I(x 2 Ŝ)

if and only if there is a function Ãn 2 ªn, de¯ned over some subset of a ¯nite-dimensional Euclidean

space, and stochastic terms b̂(x) and R̂ (x) such that

(i) [µ̂(x) ¡ µ(x)]I(x 2 Ŝ) = n¡1
Pn
i=1 Ãn(Xi; Yi;x) + b̂(x) + R̂(x);

(ii) EfÃn(Xi; Yi; X) j X = xg = 0;

(iii) plimn!1n¡1=2
Pn
i=1 b̂(Xi) = b < 1;

(iv) n¡1=2
Pn
i=1 R̂(Xi) = op(1): 2
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An estimator ^̄ of ¯ is called asymptotically linear if

^̄ ¡ ¯ = n¡1
nX

i=1
Ã(Zi) + op(n¡1=2)

holds.12 De¯nition 1 is analogous to the conventional de¯nition, but extends it in ¯ve ways to ac-

commodate nonparametric estimators. First, since the parameter µ(x) that we estimate is a function

evaluated at a point, we need a notation to indicate the point x at which we estimate it. Conditions

(i)-(iv) are expressed in terms of functions of x. Second, for nonparametric estimation, asymptotic lin-

earity only holds over the support of X - the region where the density is bounded away from zero. To

de¯ne the appropriate conditions for this restricted region, we introduce a trimming function I(x 2 Ŝ)

that selects observations only if they lie in Ŝ and discards them otherwise.

Third, nonparametric estimators depend on smoothing parameters and usually have bias functions

that converge to zero for particular sequences of smoothing parameters. We introduce a subscript n to

the Ã-function and consider it to be an element of a class of functions ªn, instead of a ¯xed function, in

order to accommodate smoothing parameters. For example, in the context of kernel estimators, if we

consider a smoothing parameter of the form ® (x) ¢ hn, di®erent choices of hn generate an entire class

of functions ªn indexed by a function ® (¢) for any given kernel.13 We absorb n¡1 into the f-function

to simplify the notation. We refer to the function Ãn as a score function. The stochastic term b̂ (x) is

the bias term arising from estimation. For parametric cases, it often happens that b̂(x) = 0.

Fourth, we change the notion of the residual term being \small" from op(n¡1=2) to the weaker

condition (iv). We will demonstrate that this weaker condition is satis¯ed by some nonparametric

12See e.g. Newey and McFadden (1994) p. 2142, for example.
13See Ichimura (1996).
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estimators when the stronger condition op(n¡1=2) is not. Condition (iii) is required to restrict the

behavior of the bias term. The bias term has to be reduced to a rate o(n¡1=2) in order to properly

center expression (i) asymptotically. For the case of a d-dimensional nonparametric model with p-times

continuously di®erentiable functions, Stone (1982) proves that the optimal uniform rate of convergence

of the nonparametric regression function with respect to mean square error is (n= log n)¡p=(2p+d). His

result implies that some undersmoothing, compared to this optimal rate, is required to achieve the

desired rate of convergence in the bias term alone. Note that the higher the dimension of the estimand,

the more adjustment in smoothing parameters to reduce bias is required. This is the price that one

must pay to safeguard against possible misspeci¯cations of g(t; p) or P (z). It is straightforward to

show that parametric estimators of a regression function are asymptotically linear under some mild

regularity conditions. In the Appendix we establish that the local polynomial regression estimator of

a regression function is also asymptotically linear.

A typical estimator of a parametric regression function m(x;¯) takes the form m(x; ^̄), where m

is a known function and ^̄ is an asymptotically linear estimator, with ^̄ ¡ ¯ = n¡1
Pn
i=1 Ã(Xi; Yi) +

op(n¡1=2). In this case, by a Taylor expansion,

p
n[m(x; ^̄) ¡ m(x; ¯)] = n¡1=2

nX

i=1
[@m(x; ¯)=@¯]Ã(Xi; Yi)

+ [@m(x; ¹̄)=@¯ ¡ @m(x; ¯)=@¯]n¡1=2
nX

i=1
Ã(Xi; Yi) + op(1);

where ¹̄ lies between ¯ and ^̄. When EfÃ(Xi; Yi)g = 0 and EfÃ(Xi; Yi)Ã(Xi; Yi)0g < 1, under iid

sampling, for example, n¡1=2
Pn
i=1 Ã(Xi; Yi) = Op(1) and plimn!1 ^̄ = ¯ so that plimn!1j@m(x; ¹̄)=@¯¡
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@m(x; ¯)=@¯j = op(1) if @m(x; ¯)=@¯ is HÄolder continuous at ¯.14

Under these regularity conditions,

p
n[m(x; ^̄) ¡ m(x; ¯)] = n¡1=2

nX

i=1
[@m(x; ¯)=@¯]Ã(Xi; Yi) + op(1):

The bias term of the parametric estimator m(x; ^̄) is b̂(x) = 0, under the conditions we have speci¯ed.

The residual term satis¯es the stronger condition that is maintained in the traditional de¯nition of

asymptotic linearity.

(a) Asymptotic Linearity of the Kernel Regression Estimator

We now establish that the more general kernel regression estimator for nonparametric functions is

also asymptotically linear.The following corollary is a consequence of a more general theorem proved

in the Appendix for local polynomial regression models used in Heckman, Ichimura, Smith and Todd

(1994, revised, 1996a) and Heckman, Ichimura and Todd (1993, published 1997). We present a

specialized result here to simplify notation and focus on main ideas. To establish this result we need

to invoke the following assumptions.

Assumption 1 Sampling of fXi; Yig is i.i.d., Xi takes values in Rd and Yi in R, and V ar(Yi) < 1.

When a function is p-times continuously di®erentiable and its p-th derivative satis¯es HÄolder's

condition, we call the function p-smooth. Let m(x) = EfYijXi = xg.

Assumption 2 m(x) is ¹p-smooth, where ¹p > d.

14A function is HÄolder continuous at X = x0 with constant 0 < ® · 1 if j'(x; µ)¡ '(x0; µ)j · C¢ k x ¡ x0 k® for
some C > 0 for all x and µ in the domain of the function '(¢; ¢). Usually HÄolder continuity is de¯ned for a function with
no second argument µ. We assume that usual HÄolder continuity holds uniformly over µ whenever there is an additional
argument.
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We also allow for stochastic bandwidths:

Assumption 3 Bandwidth sequence an satis¯es plimn!1an=hn = ®0 > 0 for some deterministic

sequence fhng that satis¯es nhdn= log n ! 1 and nh2¹p
n ! c < 1 for some c ¸ 0.

This assumption implies 2¹p > d but a stronger condition is already imposed in Assumption 3.15

Assumption 4 Kernel function K(¢) is symmetric, supported on a compact set, and is Lipschitz

continuous.

The assumption of compact support can be replaced by a stronger assumption on the distribution of

Xi so that all relevant moments exist. Since we can always choose K (¢), but we are usually not free

to pick the distribution of Xi, we invoke compactness.

In this paper we consider trimming functions based on S and Ŝ that have the following structure.

Let fX(x) be the Lebesgue density of Xi, S = fx 2 Rd; fX(x) ¸ q0g, and Ŝ = fx 2 Rd; f̂X(x) ¸ q0g,

where supx2S jf̂X(x)¡fX(x)j converges almost surely to zero, and fX(x) is p-smooth. We also require

that fX(x) has a continuous Lebesgue density ff in a neighborhood of q0 with ff (q0) > 0. We refer

to these sets S and Ŝ to be p-nice on S. The smoothness of fX(x) simpli¯es the analysis and hence

helps to establish the equicontinuity results we utilize.

Assumption 5 Trimming is ¹p-nice on S.

In order to control the bias of the kernel regression estimator, we need to make additional as-

sumptions. Certain moments of the kernel function need to be 0, the underlying Lebesgue density

15Assumption 3 implies hn ! 0 and logn ¢ h2¹p¡dn ! 0. These two imply 2¹p > d. Also notice that the assumption
implies an ! 0.
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of Xi, fX(x), needs to be smooth, and the point at which the function is estimated needs to be an

interior point of the support of Xi. It is demonstrated in the Appendix that these assumptions are

not necessary for ¹p-th order local polynomial regression estimator.

Assumption 6 Kernel function K(¢) has moments of order 1 through ¹p ¡ 1 that are zero.

Assumption 7 fX(x) is ¹p-smooth.

Assumption 8 A point at which m (¢) is being estimated is an interior point of the support of Xi.

The following characterization of the bias is a consequence of Therorem 3 that is proved in the

Appendix.

Corollary 1 Under Assumptions 1{7, if K(u1; : : : ; ud) = k(u1) ¢ ¢ ¢ k(ud) where k(¢) is a one dimen-

sional kernel, the kernel regression estimator m̂0(x) of m(x) is asymptotically linear with trimming,

where, writing "i = Yi ¡ EfYijXig, and

Ãn(Xi; Yi;x) = (n®0hdn)¡1"jK ((Xi ¡ x)=(®0hn)) I(x 2 S)=fX(x),

b̂(x) = (®0hn)¹p ¢ [fX(x) ¢
Z

K(u)du]¡1

£
¹pX

s=1
[s!(¹p ¡ s)!]¡1

dX

k=1

·
[
Z

u¹p
kK(u)du][@sm(x)=(@xk)s] ¢ [@(¹p¡s)fX(x)=(@xk)(¹p¡s)]

¸
: 2

Our use of an independent product form for the kernel function simpli¯es the expression for the bias

function. For a more general expression without this assumption see the Appendix. Corollary 1 di®ers

from previous analyses in the generality with which we characterize the residual term.

(b) Extensions To The Case Of Local Polynomial Regression
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In the Appendix, we consider the more general case in which the local polynomial regression

estimator for ĝ(t; p) is asymptotically linear with trimming with a uniformly consistent derivative. The

latter property is useful because, as the next lemma shows, if both P̂ (z) and ĝ(t; p) are asymptotically

linear, and if @ĝ(t; p)=@p is uniformly consistent, then ĝ(t; P̂ (z)) is also asymptotically linear under

some additional conditions. We also verify in the Appendix that these additional conditions are

satis¯ed for the local polynomial regression estimators.

Let ¹Pt(z) be a function that is de¯ned by a Taylor's expansion of ĝ(t; P̂ (z)) in the neighborhood

of P (z), i.e. ĝ(t; P̂ (z)) = ĝ(t; P (z)) + @ĝ(t; ¹Pt(z))=@p ¢ [P̂ (z) ¡ P (z)].

Lemma 1 Suppose that

(i) Both P̂ (z) and ĝ(t; p) are asymptotically linear with trimming where

[P̂ (z) ¡ P (z)]I(x 2 Ŝ) = n¡1
nX

j=1
Ãnp(Dj; Zj; z) + b̂p(z) + R̂p(z);

[ĝ(t; p) ¡ g(t; p)]I(x 2 Ŝ) = n¡1
nX

j=1
Ãng(Yj ; Tj ; P (Zj); t; p) + b̂g(t; p) + R̂g(t; p):

(ii) @ĝ(t; p)=@p and P̂ (z) are uniformly consistent and converge to @g(t; p)=@p and P (z), respectively

and that @g(t; p)=@p is continuous.

(iii) plimn!1n¡1=2
Pn
i=1 b̂g(Ti; P (Zi)) = bg and

plimn!1n¡1=2
Pn
i=1 @g(Ti; P (Zi))=@p ¢ b̂p(Ti; P (Zi)) = bgp ;

(iv) plimn!1n¡1=2
Pn
i=1[@ĝ(Ti; ¹PTi(Zi))=@p ¡ @g(Ti; P (Zi))=@p] ¢ R̂p(Zi) = 0;

(v) plimn!1n¡3=2
Pn
i=1

Pn
j=1[@ĝ(Ti; ¹PTi(Zi))=@p ¡ @g(Ti; P (Zi))=@p] ¢ Ãnp(Dj; Zj; Zi) = 0:
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then ĝ(t; P̂ (z)) is also asymptotically linear where

[ĝ(t; P̂ (z)) ¡ g(t; P (z))]I(x 2 Ŝ)

= n¡1
nX

j=1
[Ãng(Yj ; Tj ; P (Zj); t; P (z)) + @g(t; P (z))=@p ¢ Ãnp(Dj; Zj; z)] + b̂(x) + R̂(x);

and plimn!1n¡1=2
Pn
i=1 b̂(Xi) = bg + bgp . 2

An important property of this expression which we exploit below is that the e®ect of the kernel

function Ãnp(Dj ; Zj ; z) always enters multiplicatively with @g(t; P (z))=@p. Thus both the bias and

variance of P (z) depend on the slope of g with respect to p. Condition (ii) excludes nearest-neighbor

type matching estimators with a ¯xed number of neighbors. With conditions (ii){(v), the proof of

this lemma is just an application of Slutsky's theorem and hence the proof is omitted.

In order to apply the theorem, however, we need to verify the conditions. We sketch the main

arguments for the case of parametric estimator P̂ (z) of P (z) here and present proofs and discussion

of the nonparametric case to the Appendix.

Under the regularity conditions just presented, the bias function for a parametric P̂ (z) is zero.

Hence condition (iii) holds if ĝ(t; p) is asymptotically linear and its derivative is uniformly consistent

for the true derivative. Condition (iv) also holds since jR̂p(Zi)j = op(n¡1=2) and the derivative of

ĝ(t; p) is uniformly consistent. Condition (v) can be veri¯ed by exploiting the particular form of score

function obtained earlier. Observing that Ãp(Dj; Zj; Zi) = Ãp1(Zi) ¢ Ãp2(Dj ; Zj), we obtain

n¡3=2
nX

i=1

nX

j=1
[@ĝ(Ti; ¹PTi(Zi))=@p ¡ @g(Ti; P (Zi))=@p] ¢ Ãp(Dj; Zj; Zi)

= n¡1
nX

i=1
[@ĝ(Ti; ¹PTi(Zi))=@p ¡ @g(Ti; P (Zi))=@p]Ãp1(Zi)n¡1=2

nX

j=1
Ãp2(Dj; Zj);
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so condition (v) follows from an application of the central limit theorem and the uniform consistency

of the derivative of ĝ(t; p).

For the case of nonparametric estimators, Ãnp does not factor and the double summation does

not factor as it does in the case of parametric estimation. For this more general case, we apply the

equicontinuity results obtained by Ichimura (1996) for general U-statistics to verify the condition.

We verify all the conditions for the local polynomial regression estimators in appendix. Since the

derivative of ĝ(t; p) needs to be de¯ned we assume

Assumption 9 K (¢) is 1-smooth.

Lemma 1 implies that the asymptotic distribution theory of ¢̂ can be obtained for those estimators

based on asymptotically linear estimators with trimming with no loss of generality. Once this result

is established, it can be used in lemma 1 to analyze the properties of two stage estimators of the form

ĝ(t; P̂ (z)).

(c) Theorem 2: The Asymptotic Distribution of The Matching Estimator Under General Conditions

Theorem 2 enables us to produce the asymptotic distribution theory of a variety of estimators

¢̂ of the treatment e®ect under di®erent identifying assumptions. It also produces the asymptotic

distribution theory for matching estimators based on di®erent estimators of g(t; p) and P (z). In

sections 3 and 4, we presented various matching estimators for the mean e®ect of treatment on the

treated invoking di®erent identifying assumptions. An alternative to matching is the conventional

index-su±cient selection estimators that can be used to construct estimators of E(Y0 j D = 1;X),

as described in our companion paper Heckman, Ichimura and Todd (1994, 1997) and in Heckman,
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Ichimura, Smith and Todd (1994, revised 1996a,b). Our analysis is su±ciently general to cover the

distribution theory for that case as well.

Denote the conditional expectation or variance given that X is in S by ES(¢) or VarS(¢), respec-

tively. Let the number of obsevations in sets I0 and I1 be N0 and N1, respectively, where N = N0+N1

and that 0 < limN!1N1=N0 = µ < 1.

Theorem 2 Under the following conditions:

(i) fY0i; Xigi2I0 and fY1i;Xigi2I1 are independent and within each group they are i.i.d. and Y0i for

i 2 I0 and Y1i for i 2 I1 each has a ¯nite second moment.

(ii) The estimator ĝ(x) of g(x) = EfY0ijDi = 1;Xi = xg is asymptotically linear with trimming,

where

[ĝ(x) ¡ g(x)]Ifx 2 Ŝg = N¡1
0

X

i2I0
Ã0N0N1(Y0i; Xi; x)

+ N¡1
1

X

i2I1
Ã1N0N1(Y1i;Xi;x) + b̂g(x) + R̂g(x)

and the score functions ÃdN0N1(Yd; X;x) for d = 0 and 1, the bias term b̂g(x), and the trimming

function satisfy,

(ii-a) EfÃdN0N1(Ydi; Xi; X)jDi = d;X;D = 1)g = 0 for d = 0 and 1; and

VarfÃdN0N1(Ydi; Xi; X)g = o(N) for each i 2 I0 [ I1.

(ii-b) plimN1!1N¡1=2
1

P
i2I1 b̂(Xi) = b

(ii-c) plimN1!1VarfE[Ã0N0N1(Y0i;Xi;X) j Y0i;Di = 0;Xi; D = 1]jD = 1g = V0 < 1

plimN1!1VarfE[Ã1N0N1(Y1i;Xi;X) j Y1i;Di = 1;Xi; D = 1]jD = 1g = V1 < 1,
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and that

lim
N1!1

Ef[Y1i¡g(Xi)]I(Xi 2 S)E[Ã1N0N1(Y1i; Xi; X) j Y1i;Di = 1;Xi;D = 1]jD = 1g = Cov1;

(ii-d) S and Ŝ are ¹p-nice on S, where ¹p > d, where d is the number of regressors in X and f̂(x)

is a kernel density estimator that uses a kernel function that satis¯es Assumption 6.

Then under (A-10), the asymptotic distribution of

N1=2
1

2
64

N¡1
1

P
i2I1

[Y1i ¡ ĝ(Xi)]I(Xi 2 Ŝ)

N¡1
1

P
i2I1

I(Xi 2 Ŝ)
¡ ES(Y1 ¡ Y0jD = 1)

3
75

is normal with mean b=Pr(X 2 SjD = 1) and asymptotic variance

Pr(X 2 SjD = 1)¡1fVarS [ES(Y1 ¡ Y0jT; P (Z);D = 1)jD = 1]

+ ES [VarS(Y1jT;P (Z); D = 1)jD = 1]g

+ Pr(X 2 SjD = 1)¡2fV1 + 2 ¢ Cov1 + µV0g: 2

Proof: See the Appendix

Theorem 2 shows that the asymptotic variance consists of ¯ve components. The ¯rst two terms

are the same as those previously presented in Theorem 1. The latter three terms are the contributions

to variance that arise from estimating of g(x) = EfYijDi = 1;Xi = xg. The third and the fourth

terms arise from using observations for which D = 1 to estimate g(x). If we use just observations for

which D = 0 to estimate g(x), as in the case of the simple matching estimator, then these two terms
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do not appear and we only acquire the ¯fth term.16 We consider the more general case with all ¯ve

terms. If N0 is much larger than N1, then the sampling variation contribution of D = 0 is small as µ

is small.

Condition (i) covers both random and choice-based sampling and enables us to avoid degeneracies

and to apply a central limit theorem. Condition (ii) elaborates the asymptotic linearity condition

for the estimator of g(x). We assume p-nice trimming. The additional condition on the trimming

function is required to reduce the bias that arises in estimating the support.

Note that there is no need for g(x) to be smooth. A smoothness condition on g(x) is used solely

to establish asymptotic linearity of the estimator of g(x). Also note that the sampling theory above

is obtained under mean independence:

ES(Y0 j D = 1;X) = ES(Y0 j X) = ES(Y0 j D = 0;X):

Strong ignorability conditions given by (A-1), (A-2) or (A-3) while conventional in the matching

literature are not needed but they obviously imply these equalities.

Theorem 2 can be combined with the earlier results to obtain an asymptotic distribution theory

for estimators that use ĝ(t; P̂ (z)). One only needs to replace function ÃN (YDii; Di;Xi;X) and the

bias term by those obtained in Lemma 2.

16An earlier version of the paper assumed that only observations for which D = 0 are used to estimate g(x).
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7 Answers To The Three Questions of Section 1 and More General

Questions Concerning the Value of Apriori Information

Armed with these results, we now investigate the three questions posed in the Section 1.

(1) Is it better to match on P(X) or X if you know P(X)?

Matching on X, ¢X , involves d-dimensional nonparametric regression function estimation whereas

matching on P (X), ¢̂P , only involves one dimensional nonparametric regression function estimation.

Thus from the perspective of bias, matching on P (X) is better in the sense that it allows
p

N-

consistent estimation of (P-2) for a wider class of models than is possible if matching is performed

directly on X. This is because estimation of higher-dimensional functions requires that the underlying

functions be smoother for bias terms to converge to zero. If we specify parameteric regression models,

the distinction does not arise if the model is correctly speci¯ed.

When we restrict consideration to models that permit
p

N-consistent estimation either by matching

on P (X) or on X, the asymptotic variance of ¢̂P is not necessarily smaller than that of ¢̂X . To see

this, consider the case where we use a kernel regression for the D = 0 observations i.e. those with i 2

I0. In this case score function Ã1N0N1(Y1i;Xi;X) = 0 and

Ã0N0N1(Y0i; Xi;x) =
"iK ((Xi ¡ x)=aN0) I(x 2 S)
adN0

fX(xjD = 0)
R

K(u)du
;

where "i = Y0i ¡ EfY0ijXi;Di = 0g and we write fX(xjD = 0) for the Lebesgue density of Xi given

Di = 0. (We use analogous expressions to denote various Lebesgue densities.) Clearly V1 and Cov1

are zero in this case. Using the score function we can calculate V0 when we match on X. Denoting
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this variance by V0X ,

V0X = lim
N0!1

VarfE[Ã0N0N1(Y0i; Xi;X) j Y0i; Di = 0;Xi;D = 1]jD = 1g

= lim
N0!1

Var

(
E

"
"iK ((Xi ¡ X)=aN0) I(X 2 S)
adN0

fX(XjD = 0)
R

K(u)du
jY0i;Di = 0; Xi; D = 1

#
jD = 1

)
:

Now observe that conditioning on Xi and Y0i; "i is given, so that we may write the last expression as

V ar

(
"iE

"
K((Xi ¡ X)=aN0)I(X 2 S)
adN0

fX(X j D = 0)
R

K(u)du
j Di = 0; Xi;D = 1

#
jDi = 0;D = 1

)
:

Now

E

"
K((Xi ¡ X)=aN0)I(X 2 S)
adN0

fx(X j D = 0)
R

K(u)du
j Di = 0;Xi;D = 1

#

can be written in the following way, making the change of variable (Xi ¡ X)=aN0 = w:

Z K(w)I([Xi ¡ aN0w] 2 S)R
K(u)du

f(Xi ¡ aN0w j D = 1)
f(Xi ¡ aN0w j D = 0)

dw:

Taking limits as N0 ! 1, and using assumptions 3, 4 and 7, so we can take limits inside the integral

lim
N0!1

E

"
K((Xi ¡ X)=aN0)I(X 2 S)
adN0

fX(X j D = 0)
R

K(u)du
jDi = 0; Xi; D = 1

#
=

f(XijD = 1)
f(XijD = 0)

I(Xi 2 S)

since aN0 ! 0 and
R

K(w)dw=
R

K(u)du = 1. Thus

V0X = ES

"
Var(Y0ijXi; Di = 0)f2

X(XijDi = 1)
f2
X(XijDi = 0)

jDi = 0
#

PrfXi 2 SjDi = 0g:
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Hence the asymptotic variance of ¢̂X is: writing ¸ = PrfX 2 SjD = 0g=Pr(X 2 SjD = 1),

Pr(X 2 SjD = 1)¡1fVarS [ES(Y1 ¡ Y0jX;D = 1)jD = 1] + ES [VarS(Y1jX; D = 1)jD = 1]

¸µES [V ar(Y0jX; D = 0)f2
X(XjD = 1)=f2

X(XjD = 0)jD = 0]g:

Similarly for ¢̂P , V0P is

Pr(X 2 SjD = 1)¡1fVarS [ES(Y1 ¡ Y0jP (X); D = 1)jD = 1] + ES[VarS(Y1jP (X);D = 1)jD = 1]

+ ¸µES [Var(Y0jP (X); D = 0)f2
p (P (X)jD = 1)=f2

p (P (X)jD = 0)jD = 0]g:

The ¯rst two terms for both variance expressions are the same as those that appear in VX and VP in

Theorem 1. To see that one variance is not necessarily smaller than the other, consider the case where

fX(X j D = 1) = fX(X j D = 0) and µ = 1. Clearly in this case fp(P (X) j D = 1) = fp(P (X) j D =

0). Propensity score matching has smaller variance if and only if

ES fES(Y1 j P (X);D = 1)ES(Y0 j P (X); D = 1) j D = 1g

> ES fES(Y1 j X; D = 1)ES(Y0 j X;D = 1) j D = 1g :

Since the inequality does not necessarily hold, the propensity score matching estimator in itself does

not necessarily improve upon the regular matching estimator.17,18

(2) What are the e®ects on asymptotic bias and variance if we use an estimated value of

17For example ES(Y1 j X;D = 1) = ES(Y0 j X;D = 1) or ES(Y1 j X;D = 1) = ¡ES(Y0 j X;D = 1) can hold.
18In an apparently independent analysis, Hahn (1996) considers a special case of models considered in this paper and

shows in a model with no exclusion restrictions that when P is not known, the estimated propensity score estimator is
e±cient and that knowledge of P improves e±ciency.
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P?

When P (x) is estimated nonparametrically, the smaller bias that arises from matching on the

propensity score no longer holds true if estimation of P (x) is a d-dimensional nonparametric estimation

problem where d > 1. In addition, estimation of P (x) increases the asymptotic variance. Lemma 1

informs us that the score, when we use estimated P (z) but no other conditioning variables, is

ÃdN0N1g(Ydj ; P (Zj);P (z)) + @g(P (z))=@p ¢ ÃNp(Dj; Zj; z);

for i 2 Id, d = 0; 1, where ÃdN0N1g are the scores for estimating g(p) and ÃNp is the score for estimating

P (z). By assumption (ii-a) they are not correlated with @g(P (z))=@p ¢ ÃNp(Dj ; Zj ; z), and hence the

variance of the sum of the scores is the sum of the variances of each score. So the variance increases

by the variance contribution of the score @g(P (z))=@p ¢ ÃNp(Dj ; Zj ; z) when we use estimated, rather

than known, P (z). Even with the additional term, however, matching on X does not necessarily

dominate matching on P (X) because the additional term may be arbitrarily close to zero when g0(p)

is close to zero.

(3) What are the bene¯ts, if any, of econometric separability and exclusion restrictions

on the bias and variance of matching estimators?

We ¯rst consider exclusion restrictions in the estimation of P (x). Again we derive the asymptotic

variance formulae explicitly using kernel regression estimator. Using Corollary 1, the score function

for estimating P (x) is

ÃNp(Xj; Dj ;x) =
ujK ((Xj ¡ x)=aN ) I(x 2 S)

adNfX(x)
R

K(u)du
;

where uj = Dj ¡EfDj jXjg. Hence the variance contribution of estimation of P (z) without imposing
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exclusion restrictions is

V2X = lim
N!1

VarfE[@g(P (Z))=@p

£ a¡dN ujK ((Xj ¡ X)=aN) I(X 2 S)=[fX(X)
Z

K(u)du] j Dj ;Xj; D = 1]g

= ES [Var(DjjXj)[@g(P (Zj))=@p]2 ¢ f2
X(Xj jD = 1)=f2

X(Xj)][PrfXj 2 Sg]¡1:

Analogously, we de¯ne the variance contribution of estimating of P (z) imposing exclusion restrictions

by V2Z . Observe that when Z is a subset of the variables in X, and when there are exclusion restrictions

so P (X) = P (Z) then one can show that V2Z · V2X . Thus, exclusion restrictions in estimating P (X)

reduce the asymptotic variance of the matching estimator|an intuitively obvious result.

To show this ¯rst note that in this case Var(D j X) = Var(D j Z). Thus

[V2X ¡ V2Z ] ¢ PrfX 2 Sg

= ESfVar(DjZ)[@g(P (Z))=@p]2 ¢ [f2
X(XjD = 1)=f2

X(X) ¡ f2
Z(ZjD = 1)=f2

Z(Z)]g

= ESfVar(DjZ)[@g(P (Z))=@p]2 ¢
"
f2
Z(ZjD = 1)

f2
Z(Z)

#
¢
"
E

Ã
f2
X(XjZ;D = 1)

f2
X(X j Z)

jZ
!

¡ 1

#
g

¸ ESfVar(DjZ)[@g(P (Z))=@p]2 ¢
"
f2
Z(ZjD = 1)

f2
Z(Z)

#
¢
"
E

µ
fX(XjZ; D = 1)

fX(X j Z)
jZ

¶2
¡ 1

#
g

= 0:

Since the other variance terms are the same, imposing the exclusion restriction helps to reduce the

asymptotic variance by reducing the estimation error due to estimating the propensity score. The

same is true when we estimate the propensity score by a parametric method. It is straightforward to

show that, holding all other things constant, the lower the dimension of Z, the less the variance in the
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matching estimator. Exclusion restrictions in T also reduce the asymptotic variance of the matching

estimator.

By the same argument, it follows that E
©
[f2
X(X j D = 1)=f2

X(X j D = 0)] ¡ 1 j D = 0
ª ¸ 0. This

implies that under homoskedasticity for Y0, the case when f(X j D = 1) = f(X j D = 0) yields the

smallest variance.

We next examine the consequences of imposing an additive separability restriction on the asymp-

totic distribution. We ¯nd that imposing additive separability does not necessarily lead to a gain in

e±ciency. This is so, even when the additively separable variables are independent. We describe this

using the estimators studied by Tjostheim and Auestad (1994) and Linton and Nielsen (1995).19

They consider estimation of g1(X1), g2(X2) in

E(Y j X1 = x1;X2 = x2) = g1(X1) + g2(X2)

where x = (x1; x2). There are no overlapping variables among X1 and X2. In our context, E(Y jX =

x) = g(t) + K(P (z)) and E(Y jX = x) is the parameter of interest. In order to focus on the e®ect of

imposing additive separability, we assume P (z) to be known so that we write P for P (Z).

Their estimation method ¯rst estimates EfY jT = t; P = pg = g(t)+K(p) non-parametrically, say

by ÊfY jT = t; P = pg, and then integrates ÊfY jT = t; P = pg over p using an estimated marginal

distribution of P . Denote the estimator by ĝ(t). Then under additive separability, ĝ(t) consistently

estimates g(t) + EfK(P )g. Analogously one can integrate ÊfY jT = t; P = pg ¡ ĝ(t) over t using

an estimated marginal distribution of T to obtain a consistent estimator of K(p) ¡ EfK(P )g. We

19The derivative of EfY jT = t; P = pg with respect to p only depends on p if it is additively separable. Fan, HÄardle,
and Mammen (1996) exploits this property in their estimation. Using this estimator does not lead to an improvement
in e±ciency, either.
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add the estimators to obtain the estimator of E(Y j X = x) that imposes additive separability.

The contribution of estimation of the regression function to asymptotic variance when T and P are

independent and additive separability is imposed, is Pr(X 2 S j D = 1)¡1 times

µES

(
VarS(Y0 j T; P;D = 0)

·f(P j D = 1)
f(P j D = 0)

+
f(T j D = 1)
f(T j D = 0)

¡ 1
¸2)

:20

When the additive separability is not used, it is Pr(X 2 S j D = 1)¡1 times

µES

(
VarS(Y0 j T;P;D = 0)

·f(P j D = 1) ¢ f(T j D = 1)
f(P j D = 0) ¢ f(T j D = 0)

¸2)
:

Note that the ¯rst expression is not necessarily smaller, since f(P j D = 1) ¢ f(T j D = 1) can be

small without both f(P j D = 1) and f(T j D = 1) being simultaneously small.21

Imposing additive separability per se does not necessarily improve e±ciency. This is in contrast

to the case of exclusion restrictions where imposing them always improved e±ciency. Whether there

exists a method that improves e±ciency by exploiting additive separability is not known to us.

Note that when f(P j D = 1) = f(P j D = 0) and f(T j D = 1) = f(T j D = 0) both hold, the

variance for the additively separable case and for the general case coincide. Under homoskedasticity

of Y0, the most e±cient case arises when the distributions of (T;P (Z)) given D = 1 and (T;P (Z))

given D = 0 coincide. In the additively separable case, only the marginal distributions of P (Z) and

20The derivation is straightforward but tedious. Use the asymptotic linear representation of the kernel regression
estimator and then obtain the asymptotic linear expression using it.

21Let a(P ) = f(P j D = 1)=f(P j D = 0) and b(T ) = f(T j D = 1)=f(T j D = 0) and de¯ne an interval H(T ) = [[
1¡b(T )]=[1+b(T )]; 1] when b(T ) < 1. If whenever b(T ) > 1, a(P ) > 1 and whenever b(T ) < 1, a(P ) 2 H(T ) holds. Then
imposing additive separability improves e±ciency. On the other hand, if whenever b(T ) > 1, a(P ) < 1 and whenever
b(T ) < 1, a(P ) lies outside the interval H(T ), then imposing additive separability using the available methods worsens
e±ciency even if the true model is additively.
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T respectively have to coincide, but the basic result is the same.22

Note that nearest neighbor matching \automatically" imposes the restriction of balancing the

distributions of the data whereas kernel matching does not. While our theorem does not justify

the method of nearest neighbor matching, within a kernel matching framework we may be able to

reweight the kernel to enforce the restrictions that the two distributions be the same. That is an open

question which we will answer in our future research. Note that we clearly need to reweight so that

the homoskedasticity condition holds.

8 Summary and Conclusion

This paper examines matching as an econometric method for evaluating social programs. Matching

is based on the assumption that conditioning on observables eliminates selective di®erences between

program participants and nonparticipants that are not correctly attributed to the program being

evaluated.

We present a framework to justify matching methods that allows analysts to exploit exclusion

restrictions and assumptions about additive separability. We then develop a sampling theory for

kernel-based matching methods that allows the matching variables to be generated regressors produced

from either from parametric or nonparameteric estimation methods. We show that the matching

method based on the propensity score does not necessarily reduce the asymptotic bias or the variance

of estimators of M(S) compared to traditional matching methds.

The advantage of using the propensity score is simplicity in estimation. When we use the method

22The expression above implies that the same can be said for the estimator that is constructed without imposing
additive separability. However that result is an artifact of assuming independence of P (Z) and T .
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of matching based on propensity scores, we can estimate treatment e®ects in two stages. First we build

a model that describes the program participation decision. Then we construct a model that describes

outcomes. In this regard, matching mimics features of the conventional econometric approach to

selection bias. (Heckman and Robb, 1986 or Heckman, Ichimura, Smith and Todd, 1994, 1996a.)

A useful extension of our analysis would consider the small sample properties of alternative es-

timators. In samples of the usual size in economics, cells will be small if matching is made on a

high-dimensional X. This problem is less likely to arise when matching is on a single variable like P .

This small sample virtue of propensity score matching is not captured by our large sample theory.

Intuitively, it appears that the less data hungry propensity score method would be more e±cient than

a high dimensional matching method.

Our sampling theory demonstrates the value of having the conditional distribution of the regressors

the same for D = 0 and D = 1. This point is to be distinguished from the requirement of a

common support that is needed to justify the matching estimator. Whether a weighting scheme

can be developed to improve the asymptotic variance remains to be investigated.
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A Appendix

In this Appendix we prove Lemma 1, verify the conditions of Lemma 2 for the case of a local polynomial

regression estimator, and prove Theorem 2. We ¯rst establish the property that local polynomial

regression estimators are asymptotically linear with trimming.

A.1 Proof of Theorem 3

We show that local polynomial regression estimators are asymptotically linear with trimming. Lemma

1 follows as a corollary.

The local polynomial regression estimator of a function and its derivatives is based on an idea

of approximating the function at a point by a Taylor's series expansion and then to estimate the

coe±cients using data in a neighborhood of the point. In order to present the results, therefore, we ¯rst

develop a compact notation to write a multivariate Taylor series expansion. Let x = (x1; :::; xd) and q =

(q1; :::; qd) 2 Rd where qj (j = 1; :::; d) are non-negative integers. Also let xq = xq11 ¢ ¢ ¢xqdd =(q1! ¢ ¢ ¢ qd!).

Note that we include (q1! ¢ ¢ ¢ qd!) in the de¯nition. This enables us to study the derivative of xq

without introducing new notation; for example, @xq=@x1 = x¹q where ¹q = (q1 ¡ 1; :::; qd), if q1 ¸

1 and 0 otherwise. When the sum of the elements of q is s, xq corresponds to a Taylor series

polynomial associated with the term @sm(x)=(@xq11 ¢ ¢ ¢@xqdd ). In order to consider all polynomials

that correspond to s-th order derivatives we next de¯ne a vector whose elements are themselves

distinct vectors of nonnegative integers whose elements sum to s. We denote this row vector by

Q(s) = ((q1; :::; qd))q1+:::+qd=s; that is Q(s) is a row vector of length (s + d ¡ 1)!=[s!(d ¡ 1)!] whose

typical element is a row vector (q1; :::; qd), which has arguments that sum to s. For concreteness

we assume that f(q1; :::; qd)g are ordered according to the magnitude of
Pd
j=1 10d¡jqj from largest
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to smallest. We de¯ne a row vector xQ(s) = (x(q1;:::;qd))q1+:::+qd=s. This row vector corresponds to

the polynomial terms of degree s. Let xQp = (xQ(s))s2f1;:::pg. This row vector represents the whole

polynomial up to degree p from lowest to the highest.

Also let m(s)(x) for s ¸ 1 to denote a row vector whose typical element is @sm(x)=(@xq11 ¢ ¢ ¢ @xqdd )

where q1 + ¢ ¢ ¢ + qd = s and the elements are ordered in the same way f(q1; :::; qd)g are ordered. We

also write m(0)(x) = m(x). Let ¯¤p(x0) = (m(0)(x0); :::; m(p)(x0))0. In this notation, Taylor's expansion

of m(x) at x0 to order p without a remainder term can now be written as (x ¡ x0)Qp¯¤p(x0).

We now de¯ne the local polynomial regression estimator with a global smoothing parameter ®hn,

where ® 2 [®0 ¡ ±; ®0 + ±] for some ®0 > 0 and ®0 > ± > 0. We denote A = [®0 ¡ ±; ®0 + ±]. Let

Kh(s) = (®hn)¡dK(s=(®hn)) and let ¯ = (¯00; :::; ¯
0
p)0, where ¯0t is comformable with m(t)(x0), for

t = 0; : : : ; p. Also let Y = (Y1; :::; Yn)0, W (x0) = diag(Kh(X1 ¡ x0); :::;Kh(Xn ¡ x0)), and

Xp(x0) =

0
BBBBBBB@

(X1 ¡ x0)Qp

...

(Xn ¡ x0)Qp

1
CCCCCCCA

:

Then the local polynomial regression estimator is de¯ned as the solution to

min
¯

nX

i=1
[Yi ¡ (Xi ¡ x0)Qp¯]2Kh(Xi ¡ x0)

or, more compactly

^̄p(x0) = arg min(Y ¡ Xp(x0)¯)0W (x0)(Y ¡ Xp(x0)¯):
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Clearly the estimator equals [X 0
p(x0)W (x0)Xp(x0)]¡1X 0

p(x0)W (x0)Y when the inverse exists. When

p = 0, the estimator is the kernel regression estimator and when p = 1 the estimator is the local linear

regression estimator.23

Let H = diag(1; (®hn)¡1¶d; :::; (®hn)¡p¶(p+d¡1)!=[p!(d¡1)!]), where ¶s denotes a row vector of size

s with 1 in all arguments. Then ^̄p(x0) = HM̂pn(x0)¡1n¡1H 0X 0
p(x0)W (x0)Y , where M̂pn(x0) =

n¡1H 0X 0
p(x0)W (x0)Xp(x0)H.

Note that by Taylor's expansion of order ¹p ¸ p at x0, m(Xi) = (Xi ¡ x0)Q¹p¯¤(x0) + r¹p(Xi; x0),

where r¹p(Xi; x0) = (Xi¡x0)Q(¹p)[m(¹p)(¹xi)¡m(¹p)(x0)] and ¹xi lies on the line between Xi and x0. Write

m = (m(X1); : : : ; m(Xn))0, r¹p(x0) = (r¹p(X1; x0); : : : ; r¹p(Xn; x0))0, and " = ("1; : : : ; "n)0:

Let Mpn(x0) be the square matrix of size
Pp
q=0(q + d¡ 1)!=[q!(d¡ 1)!] denoting the expectation of

M̂pn(x0), where the s-th row, t-th column \block" of Mpn(x0) matrix be, for 0 · s; t · p,

Exf[((X ¡ x0)=(®hn))Q(s¡1)]0[((X ¡ x0)=(®hn))Q(t¡1)]Kh(X ¡ x0)g:

Let limn!1Mpn(x0) = Mp ¢ f(x0)p+1. Note that Mp only depends on K (¢) when x0 is an interior

point of the support of X. Also write Îi = IfXi 2 Ŝg and Ii = IfXi 2 Sg. We prove the following

theorem.

Theorem 3 Suppose Assumptions 1{4 hold. If Mp is non-singular, then the local polynomial regres-

23Ruppert and Wand (1994) develop multivariate version of the local linear estimator. Masry (1995) develops multi-
variate general order local polynomial regression.
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sion estimator of order ¹p, m̂¹p(x), satis¯es,

[m̂¹p(x0) ¡ m(x0)]Î0 = n¡1
nX

i=1
"iK¤

¹ph(Xi ¡ x0)I0 + b̂(x0) + R̂(x0);

where b̂(x0) = o(h¹p
n), n¡1=2

nP
i=1

R̂(Xi) = op(1), and

K¤
¹ph(Xi ¡ x0) = (1; 0; : : : ; 0) ¢ M¹pn(x0)¡1 ¢ [((Xi ¡ x0)=(®0hn))Q¹p ]0Kh0(Xi ¡ x0):

Furthermore, suppose that Assumptions 5{7 hold. Then the local polynomial regression estimator of

order 0 · p < ¹p, m̂p(x), satis¯es,

[m̂p(x0) ¡ m(x0)]Î0 = n¡1
nX

i=1
"iK¤

ph(Xi ¡ x0)I0 + b̂(x0) + R̂(x0);

where

bn(x0) = (®0hn)¹pe1 ¢ [Mpn(x0)]¡1
¹pX

s=p+1

·
[
Z

uQ(0) ¢ uQ(s)m(s)(x0) ¢ uQ(¹p¡s)K(u)du;

: : : ;
Z

uQ(p) ¢ uQ(s)m(s)(x0) ¢ uQ(¹p¡s)K(u)du]f (¹p¡s)(x0)0
¸
;

and n¡1=2
nP
i=1

R̂(Xi) = op(1). 2

Results similar to Theorem 3 have been proved by Fan (1993), Ruppert and Wand (1994), and

Masry (1995). They prove pointwise or uniform convergence property of the estimator. As any other

nonparametric estimator the convergence rate in this sense is slower than n¡1=2-rate. We prove that
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the averaged pointwise residuals converges to zero faster than n¡1=2-rate.24

We only specify that Mp is nonsingular because one can ¯nd di®erent conditions on K (¢) to

guarantee it. For example, assuming that K(u1; : : : ; ud) = k(u1) ¢ ¢ ¢ k(ud), if
R

s2pk(s)ds > 0, then

Mp is nonsingular.

To prove the theorem, note ¯rst that Y = m + " = X¹p(x0)¯¤¹p(x0) + r¹p(Xi; x0) + ". We wish to

consider the situation where the order of polynomial terms included, p, is less than the underlying

smoothness of the regression function, ¹p. For this purpose let X¹p(x0) = [Xp(x0); ~X¹p(x0)] and note

that

[ ^̄p(x0) ¡ ¯¤p(x0)]Î0 = H[M̂pn(x0)]¡1n¡1H 0X 0
p(x0)W (x0)" ¢ Î0 (A-3)

+ H[M̂pn(x0)]¡1n¡1H 0X 0
p(x0)W (x0) ~X¹p(x0) ~̄¤

¹p(x0) ¢ Î0 (B-3)

+ H[M̂pn(x0)]¡1n¡1H 0X 0
p(x0)W (x0)r¹p(x0) ¢ Î0; (C-3)

where ¯¤¹p(x0) = (¯¤p(x0)0; ~̄¤
¹p(x0)0)0. Note that if we use a p-th order polynomial when m(x) is p-th

order continuously di®erentiable, that is p = ¹p, then there is no second term (B-3).

Denote the ¯rst element of ^̄(x0) by m̂p(x0). We establish asymptotic linearity of m̂p(x0) and

uniform consistency of its derivative. Lemma 2 shows that the ¯rst term (A-3) determines the asymp-

totic distribution, Lemma 7 shows that the second term (B-3) determines the bias term, and Lemma

8 shows that the third term (C-3) is of su±ciently small order to be negligible.

24Masry (1995) allows ½-mixing with
P1
j=1 ½(j) <1 or strong mixing with

P1
j=1 j

a[®(j)]1¡2=º <1 for some º > 2
and a > 1¡ 2=º: We only consider i.i.d. sampling.
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Lemma 2 (Term (A-3)) Under the assumptions of Theorem 3,

(A-3) = e1 ¢ [Mpn(x0)]¡1n¡1H 0X 0
p(x0)W (x0)" ¢ I0 + R̂1(x0)

where e1 = (1; 0; : : : ; 0) and n¡1=2
Pn
i=1 R̂1(Xi) = op(1).

Proof. We ¯rst de¯ne neighborhoods of functions e1 ¢ [Mpn(x)]¡1, fX(x), I(x 2 S), and point ®0.

We denote them by ¡n, H, I, and A, respectively, where

¡n = f°n(x); sup
x2S

j°n(x) ¡ e1 ¢ [Mpn(x)]¡1j · "°g;

for some small "° > 0, H = ff(x); supx2S jf(x) ¡ fX(x)j · "fg for some small "f > 0,

I = fI(x 2 ~S); ~S = fx; f(x) ¸ q0g for some f(x) 2 H(x)g;

and A = [®0 ¡ ±®; ®0 + ±®], where 0 < ±® < ®0.25

Using the neighborhoods we next de¯ne a class of functions G1n as follows:

G1n =
n
gn; gn("i; Xi; Xj) = n¡3=2 ¢ °n(Xj) ¢ [[(Xi ¡ Xj)=(®hn)]Qp ]0"iKh(Xi ¡ Xj) ¢ ~Ij

o

where it is indexed by a row vector-valued function °n(x) 2 ¡n, ® 2 A, which is also implicit in Kh (¢),

25Note that a calculation using change of variables and the Lebesgue dominated convergence theorem shows that on S,
Mpn(x)¡1 converges to a nonsingular matrix which only depends on K (¢) times [1=f(x)]p+1. Hence, on S, each element
of Mpn(x)¡1 is uniformly bounded. Thus use of the sup-norm is justi¯ed.
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and an indicator function ~Ij 2 I. Let °n0(Xj) = e1 ¢ Mpn(Xj)¡1, °̂n(Xj) = e1 ¢ M̂pn(Xj)¡1,

gn0("i; Xi; Xj) = n¡3=2 ¢ °n0(Xj) ¢ [[(Xi ¡ Xj)=(®0hn)]Qp ]0"iKh0(Xi ¡ Xj) ¢ Ij;

and

ĝn("i;Xi;Xj) = n¡3=2 ¢ °̂n(Xj) ¢ [[(Xi ¡ Xj)=(®̂hn)]Qp ]0"iK̂h(Xi ¡ Xj) ¢ Îj ;

where we denote Kh0(Xi¡Xj) = (®0hn)¡dK((Xi¡Xj)=(®0hn)) and K̂h(Xi¡Xj) = (®̂hn)¡dK((Xi¡

Xj)=(®̂hn)). Then since R̂1(x0) = ĝn("i;Xi; x0) ¡ gn0("i;Xi; x0), the result follows if two conditions

are met: (1) equicontinuity of the process
Pn
j=1

Pn
i=1 gn("i;Xi; Xj) over G1n in a neighborhood of

gn0("i;Xi;Xj) and (2) that, with probability approaching 1, ĝn("i; Xi; Xj) lies within the neighborhood

over which we establish equicontinuity. We use the L2-norm to examine (1). We verify both of these

two conditions in turn.

We verify the equicontinuity condition (1) using a lemma in Ichimura (1996).26 We ¯rst de¯ne

some notation in order to state the lemma. For r = 1 and 2, let X r denote the r-fold product space

of X ½ Rd and de¯ne a class of functions Fn de¯ned over X r. For any Ãn 2 ªn, write Ãn;ir as a

short hand for either Ãn(xi) or Ãn(xi1; xi2), where i1 6= i2. We de¯ne UnÃn =
P

ir Ãn;ir , where
P

ir

denotes the summation over all permutations of r elements of fx1; : : : ; xng for r = 1 or 2. Then UnÃn

is called a U-process over Ãn 2 ªn. For r = 2 we assume that Ãn(Xi;Xj) = Ãn(Xj; Xi). Note that a

normalizing constant is included as a part of Ãn. A U-process is called degenerate if all conditional

expectations given other elements are zero. When r = 1, this condition is de¯ned so that E(Ãn) = 0.

26The result extends Nolan and Pollard (1987), Pollard (1990), Arcones and Gin¶e (1993), and Sherman (1994) by
considering U-statistics of general order r ¸ 1 under niid sampling and allowing F to depend on n. When F depends
on n, we need to assume condition (ii) in the lemma below as noted by Pollard (1990) when r = 1.

56



We assume that ªn ½ L2(Pr), where L2(Pr) denotes the L2-space de¯ned over X r using the

product measure of P, Pr. We denote the covering number using L2-norm, k¢k2, by N2("; P; ªn).27

Lemma 3 (Equicontinuity) Let fXigni=1 be an iid sequence of random variables generated by P.

For a degenerate U-process fUnÃng over a separable class of functions ªn ½ L2(Pr) suppose the

following assumptions hold: let kÃnk2 = [
P

ir EfÃn;irg]1=2.

(i) There exists an Fn 2 L2(Pr) such that for any Ãn 2 ªn, jÃnj < Fn such that lim supn!1
P

ir EfF 2
n;irg <

1.

(ii) For each " > 0, limn!1
P

ir EfF 2
n;ir1fFn;ir > "gg = 0.

(iii) There exists ¸(") and ¹" > 0 such that for each " > 0 less than ¹",

sup
P

N2(";P;ªn) · ¸(")

and
R ¹"
0 [log ¸(x)]r=2dx < 1.

Then for any " > 0, there exists ± > 0 such that

lim
n!1Prf sup

kÃ1n¡Ã2nk2·±
jUn(Ã1n ¡ Ã2n)j > "g = 0: 2

Following the literature we call a function Fn;ir an envelope function of Fn if for any Ãn 2 Fn,

Ãn;ir · Fn;ir holds.

27For each " > 0, the covering number Nr(";P;F) is the smallest value of m for which there exist functions g1; : : : ; gm
(not necessarily in F) such that minj [Efjf ¡ gj jrg1=r · " for each f in F . If such m does not exist then set the number
to be 1. When the sup-norm is used to measure the distance in calculating the covering number, we write N1(";F).
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In order to apply the lemma to the process
Pn
j=1

Pn
i=1 gn("i; Xi; Xj) over G1n in a neighbor-

hood of gn0("i;Xi;Xj), we ¯rst split the process into two parts; the process
P

ir gn("i; Xi; Xj) =

P
ir g0n("i;Xi; "j ;Xj), where

g0n("i;Xi; "j ;Xj) = [gn("i; Xi;Xj) + gn("j; Xj ;Xi)]=2

and the process
Pn
i=1 gn("i;Xi;Xi). Note that gn("i;Xi;Xi) = n¡3=2 ¢°n(Xi) ¢e01 ¢ "i ¢ (®hn)¡dK(0) ¢ ~Ii

is a order one process and has mean zero, hence it is a degenerate process. On the other hand

g0n("i;Xi; "j ;Xj) is a order two process and not degenerate, although it has mean zero and is symmetric.

Instead of studying g0n("i;Xi; "j;Xj) we study a sum of degenerate U-processes following Hoe®ding

(1961).28 Write Zi = ("i; Xi), Án(Zi) = Efg0n(Zi; z)jZig = Efg0n(z; Zi)jZig, and

~g0n(Zi; Zj) = g0n(Zi; Zj) ¡ Án(Zi) ¡ Án(Zj):

Then

X

ir

g0n(Zi; Zj) =
X

ir

~g0n(Zi; Zj) +
nX

i=1
2 ¢ (n ¡ 1) ¢ Án(Zi);

where ~g0n(Zi; Zj) and 2¢(n¡1)¢Án(Zi) are degenerate U-processes. Hence we study the three degenerate

U-processes: ~g0n(Zi; Zj), 2 ¢ (n¡1) ¢Án(Zi), and gn("i;Xi;Xi), by verifying the three conditions stated

in the equicontinuity lemma.

We start by verifying conditions (i) and (ii). An envelope function for g0n(Zi; Zj) can be constructed

by the sum of envelope functions for gn("i;Xi; Xi) and gn("i; Xi; Xj). Similarly an envelope function

28See also Ser°ing (1980).
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for ~g0n(Zi; Zj) can be constructed by the sum of envelope functions for g0n(Zi; Zj) and 2 ¢Án(Zi). Thus

we only need to construct envelope functions that satisfy conditions (i) and (ii) for gn("i;Xi;Xi),

gn("i;Xi; Xj), and 2 ¢ n ¢ Án(Zi).

Let I¤i = 1ffX(Xi) ¸ q0 ¡ 2"fg for some q0 > 2"f > 0. Since supx2S jf(x) ¡ fX(x)j · "f , I¤i ¸ ~Ii

holds for any ~Ii 2 I. Also for any neighborhood of Mpn(x)¡1 de¯ned by the sup-norm, there exists

a C > 0 such that jMpn(x)¡1j · C so that jgn("i;Xi;Xi)j · n¡3=2 ¢ C ¢ j"ij ¢ [(®0 ¡ ±®)hn]¡dK(0) ¢ I¤i

and the second moment of the right hand side times n is uniformly bounded over n since the second

moment of "i is ¯nite and nhdn ! 1. Hence condition (i) holds. Condition (ii) holds by an application

of Lebesgue dominated convergence theorem since nhdn ! 1.

Note that any element of [[(Xi¡Xj)=(®hn)]Qp ]0Kh(Xi¡Xj) is bounded by C1¢[(®0¡±®)hn]¡dIfkXi ¡ Xjk ·

C2 ¢ hng for some C1 and C2. Thus

jgn("i;Xi;Xj)j · n¡3=2 ¢ j"ij ¢ C ¢ C1 ¢ [(®0 ¡ ±®)hn]¡dIfkXi ¡ Xjk · C2 ¢ hng ¢ I¤j :

Therefore, analogous to the previous derivation, conditions (i) and (ii) hold for gn("i;Xi;Xj).

Note further that since the density of x is bounded on S, by some constant, say, C3 > 0,

jÁn("i;Xi)j · n¡3=2 ¢ j"ij ¢C ¢C1 ¢C3 and hence 2 ¢n ¢ jÁn("i; Xi)j has an envelope function n¡1=22 ¢ j"ij ¢

C ¢ C1 ¢ C3 that satis¯es the two conditions.

To verify condition (iii), ¯rst note the following. Write Jh(Xi¡Xj) = [[(Xi¡Xj)=(®hn)]Qp ]0Kh(Xi¡
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Xj) and Jh0(Xi ¡ Xj) = [[(Xi ¡ Xj)=(®0hn)]Qp ]0Kh0(Xi ¡ Xj). Using this notation

jgn("i; Xi; Xj) ¡ gn0("i; Xi; Xj)j (L-3)

= n¡3=2j"ij ¢ j°n(Xj) ¢ Jh(Xi ¡ Xj) ¢ ~Ij ¡ °n0(Xj) ¢ Jh0(Xi ¡ Xj) ¢ Ij j

· n¡3=2j"ij ¢ j°n(Xj) ¡ °n0(Xj)j ¢ C1 ¢ [(®0 ¡ ±®)hn]¡dIfkXi ¡ Xjk · C2 ¢ hng ¢ I¤j

+ n¡3=2j"ij ¢ j°n0(Xj)j ¢ jJh(Xi ¡ Xj) ¡ Jh0(Xi ¡ Xj)j ¢ I¤j

+ n¡3=2j"ij ¢ j°n0(Xj)j ¢ jJh0(Xi ¡ Xj)j ¢ j~Ij ¡ Ijj:

For gn("i;Xi;Xi) right hand side is bounded by some C > 0,

n¡3=2h¡dn j"ij ¢ C ¢
h
j°n(Xi) ¡ °n0(Xi)j ¢ (®0 ¡ ±®)¡dI¤i

+j°n0(Xi)j ¢ j®¡d ¡ ®¡d0 j ¢ I¤i + j°n0(Xi)j ¢ j~Ii ¡ Iij]
i
:

Since nhdn ! 1, the L2-covering number for the class of functions denoted by gn("i;Xi;Xi) for

gn 2 G1n can be bounded above by the product of the covering numbers of ¡n, A, and I. Since it is

the log of the covering number that needs to be integrable, if each of three spaces satisfy condition

(iii), then this class will also. Clearly A satis¯es condition (iii). To see that ¡n and I do also, we use

the following result by Kolmogorov and Tihomirov (1961).29 First they de¯ne a class of functions for

which the upper bound of the covering number is obtained.

De¯nition 2 A function in ª(K) has smoothness q > 0, where q = p+® with integer p and 0 < ® · 1,

29See pp.308{314. Kolmogorov and Tihomirov present their result using the concept of packing number instead of
covering number.
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if for any x 2 K and x + h 2 K, we have

Ã(x + h) =
pX

k=0
(k!)¡1Bk(h; x) + RÃ(h; x);

where Bk(h; x) is a homogenous form of degree k in h and jRÃ(h; x)j · Ckhkq, where C is a constant.

2

Let ªKq (C) = fÃ 2 ª(K) : jRÃ(h; x)j · Ckhkqg.

If a function de¯ned on K is p-times continuously di®erentiable and the p-th derivative satis¯es

HÄolder continuity with the exponent 0 < ® · 1, then a Taylor expansion shows that the function

belongs to ªKq (C) for some C, where q = p + ®.

Lemma 4 (K-T) For every set A ½ ªKq (C), where K ½ Rd, we have, for 0 < d; q < 1,

log2 N1(";A) · L(d; q; C; K)(1=")d=q

for some constant L(d; q;C;K) > 0. 2

Hence, because d=q < 1, condition (iii) holds for ¡n and I. Analogously we can verify condition

(iii) for the remaining U-processes. Hence all three processes are equicontinuous.

The remaining task is to verify that ĝn("i;Xi;Xj) lies in the neighborhood of gn0("i;Xi;Xj) over

which we showed equicontinuity. By the inequality in Lemma 3 (L-3), this follows from Assumptions

3 and 5, and by verifying that almost surely

sup
x2S;®2A

jjM̂pn(x) ¡ Mpn(x)jj ! 0;
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where limn!1 infx2S det(Mpn(x)) > 0.30 The latter follows directly from the nonsingularity of matrix

Mp and the trimming rule. Hence the following lemma completes the proof.

Lemma 5 Under the assumptions of Theorem 3, almost surely,

sup
x2S;®2A

jjM̂pn(x) ¡ Mpn(x)jj ! 0: 2

Proof. Note that any element of the matrix di®erence M̂pn(x) ¡ Mpn(x) has the form

n¡1
nX

i=1

h
(®hn)¡dJ((Xi ¡ x0)=(®hn)) ¡ E

n
(®hn)¡dJ((Xi ¡ x0)=(®hn))

oi
;

where the kernel function J(s) = sq ¢ srK(s) for some vectors q and r whose elements are integers and

they sum to p or less nonnegative integers, where q and r depend on which element we look at. To

construct a proof, we use the following lemma of Pollard (1984).31

Lemma 6 (Pollard) For each n, let ªn be a separable class of functions whose covering numbers

satisfy

sup
P

N1(";P;ªn) · A"¡W for 0 < " < 1

with constants A and W not depending on n. Let f»ng be a non-increasing sequence of positive

numbers for which limn!1 n³2n»2n= log n = 1. If jÃj · 1 and (EfÃ2g)1=2 · ³n for each Ã in ªn, then,

almost surely,

sup
ªn

jn¡1
nX

i=1
[Ã(Xi) ¡ EfÃ(Xi)g]j=(³2n»n) ! 0: 2

30Recall from the discussion of Theorem 3 that M̂pn(x) depends on the parameter ®.
31His lemma only requires that Fn is a permissible class of functions. In our applications Fn is always separable. His

Example 38, pp.35{36, gives a similar result. We provide a proof here for completeness and for later reference.
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To use this lemma, we need to calculate N1(";P;ªn). Let C1 ¸ sups2R J(s), C2 is a Lipschitz

constant for J , and C3 is a number greater than the radius of a set that includes the support of J . In

our application, recall from our proof of Theorem 3 that A = [®0 ¡ ±®; ®0 + ±®], where 0 < ±® < ®0

so that

Efj®¡d1 J((x ¡ x01)=(®1hn)) ¡ ®¡d2 J((x ¡ x02)=(®2hn))jg

· j®¡d1 ¡ ®¡d2 j ¢ EfjJ((x ¡ x01)=(®1hn))jg

+®¡d2 ¢ EfjJ((x ¡ x01)=(®1hn)) ¡ J((x ¡ x02)=(®2hn))jg

· j®¡d1 ¡ ®¡d2 j ¢ C1

+(®0 ¡ ±®)¡d ¢ [C2 ¢ (1 ¡ ®1=®2) ¢ [(®0 + ±®)=(®0 ¡ ±®)] ¢ C3g ¢ ¹h

+C2 ¢ kx01 ¡ x02k =(®0 ¡ ±®)]:

The upper bound of the right hand side does not depend on P. Moreover, the right hand side can be

made less than " ¢ C for some C > 0 by choosing j®1 ¡ ®2j · " and jx01 ¡ x02j · ". Since S and A are

both bounded subsets of a ¯nite dimensional Euclidean space, the uniform covering number condition

holds. To complete the proof of Lemma 5, note that we are free to choose »n = 1 and ³n = C ¢ hd=2n

in our application of the lemma.

Next we examine the second term (B-3).

Lemma 7 (Term (B-3)) Under the assumptions of Theorem 3,

(B-3) = b(x0) + R̂2(x0);
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where

bn(x0) = (®0hn)¹pe1 ¢ [Mp(x0)]¡1
¹pX

s=p+1

·
[
Z

uQ(0) ¢ uQ(s)m(s)(x0) ¢ uQ(¹p¡s)K(u)du;

: : : ;
Z

uQ(p) ¢ uQ(s)m(s)(x0) ¢ uQ(¹p¡s)K(u)du]f (¹p¡s)(x0)0
¸
;

n¡1=2
Pn
i=1 R̂2(Xi) = op(1), and R̂2(x0) is de¯ned as the di®erence between Term (B-3) and bn(x0).

Proof. Note that

(B-3) = e1 ¢ [M̂pn(x0)]¡1n¡1H 0X 0
p(x0)W (x0) ~X¹p(x0) ~̄¤

¹p(x0) ¢ Î0

= e1 ¢ [M̂pn(x0)]¡1
¹pX

s=p+1
n¡1

nX

i=1
[[(Xi ¡ x0)=(®hn)]Qp ]0(Xi ¡ x0)Q(s)m(s)(x0)Kh(Xi ¡ x0) ¢ Î0

= e1 ¢ [M̂pn(x0)]¡1
¹pX

s=p+1
n¡1

nX

i=1

h
[[(Xi ¡ x0)=(®hn)]Qp ]0(Xi ¡ x0)Q(s)Kh(Xi ¡ x0)

¡Ef[[(Xi ¡ x0)=(®hn)]Qp ]0(Xi ¡ x0)Q(s)Kh(Xi ¡ x0)jx0g
i
m(s)(x0) ¢ Î0 (L-7A)

+ e1 ¢ [M̂pn(x0)]¡1
¹pX

s=p+1
Ef[[(Xi ¡ x0)=(®hn)]Qp ]0(Xi ¡ x0)Q(s)Kh(Xi ¡ x0)jx0gm(s)(x0) ¢ Î0:

(L-7B)

De¯ne term (L-7A) as R̂21(x0). We apply the same method as in Lemma 2 to show that n¡1=2
Pn
i=1 R̂21(Xi) =

op(1). Instead of G1n, de¯ne the class of functions G2n as follows:

G2n = fgn; gn(Xi; Xj) = n¡3=2 ¢ °n(Xj) ¢
h
[[(Xi ¡ Xj)=(®hn)]Qp ]0(Xi ¡ Xj)Q(s)Kh(Xi ¡ Xj)

¡Ef[[(Xi ¡ Xj)=(®hn)]Qp ]0(Xi ¡ Xj)Q(s)Kh(Xi ¡ Xj)jXjg
i
m(s)(Xj) ¢ ~Ij

where it is indexed by a row vector-valued function °n(x) 2 ¡n, ® 2 A, which is also implicit in Kh (¢),
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and an indicator function ~Ij 2 I. Let

gn0(Xi;Xj) = n¡3=2 ¢ °n0(Xj) ¢ [[(Xi ¡ Xj)=(®0hn)]Qp ]0(Xi ¡ Xj)Q(s)m(s)(Xj)Kh0(Xi ¡ Xj) ¢ Ij ;

and

ĝn(Xi; Xj) = n¡3=2 ¢ °̂n(Xj) ¢ [[(Xi ¡ Xj)=(®̂hn)]Qp ]0(Xi ¡ Xj)Q(s)m(s)(Xj)K̂h(Xi ¡ Xj) ¢ Îj:

To prove that term (L-7B) equals bn(x0) + o(h¹p
n) we use the assumption that all the moments of K(¢)

of order p + 1 and higher up to ¹p have mean zero, that x0 is an interior point of the support of x

that is more than (®0 + ±)hnC interior to the closest edge of the support, where C is the radius of

the support of K (¢), and the assumption that the density of x is ¹p-times continuously di®erentiable

and its ¹p-th derivative satis¯es a HÄolder condition. Using a change of variable calculation and the

Lebesgue dominated convergence theorem, and Lemma 5 the result follows.

Note that this is the term that converges to zero with the speci¯ed rate only if x0 is an interior

point. Thus for kernel regression estimators for higher dimensions, we need to introduce a special

trimming method to guarantee this. Use of higher order local polynomial regression alleviates the

problem for higher dimensional problems, but at the price of requiring more data locally.

Lemma 8 (Term (C-3)) Under the assumptions of Theorem 3,

(C-3) = op(h¹p
n):
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Proof. Recall that the third term equals e1 ¢ [M̂pn(x0)]¡1n¡1H 0X 0
p(x0)W (x0)r¹p(x0) ¢ Î0. Note that

n¡1
°°°H 0X 0

p(x0)W (x0)r¹p(x0) ¢ Î0
°°°

= n¡1
°°°°°
nX

i=1
[(Xi ¡ x0)=(®hn)]Qp [(Xi ¡ x0)=hn]Q(¹p)[m(¹p)(¹xi) ¡ m(¹p)(x0)]Kh(x0 ¡ Xi)h¹p

n

°°°°°

· n¡1
nX

i=1

°°°[(Xi ¡ x0)=(®hn)]Qp j[(Xi ¡ x0)=hn]Q(¹p)j ¢ jKh(x0 ¡ Xi)j
°°° o(h¹p

n)

= op(h¹p
n);

where the inequality follows from the HÄolder condition on m(¹p)(x0) and the compact support condition

on K (¢), and the last equality follows from the same reasoning used to prove Lemma 5. The conclusion

follows from Lemma 5 and the assumption of nonsingularity of Mp(x0).

A.2 Verifying the Assumptions of Lemma 1

Five assumptions in Lemma 1 are as follows:

(i) Both P̂ (z) and ĝ(t; p) are asymptotically linear with trimming where

[P̂ (z) ¡ P (z)]I(x 2 Ŝ) = n¡1
nX

j=1
Ãnp(Dj; Zj ; z) + b̂p(z) + R̂p(z);

[ĝ(t; p) ¡ g(t; p)]I(x 2 Ŝ) = n¡1
nX

j=1
Ãng(Yj ; Tj; P (Zj); t; p) + b̂g(t; p) + R̂g(t; p):

(ii) @ĝ(t; p)=@p and P̂ (z) are uniformly consistent to @g(t; p)=@p and P (z), respectively, and that

@g(t; p)=@p is continuous for all t and p.

(iii) plimn!1n¡1=2
Pn
i=1 b̂g(Ti;Xi) = bg and plimn!1n¡1=2

Pn
i=1 @g(Ti; P (Zi))=@p ¢ b̂p(Ti; P (Zi)) =

bgp ;
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(iv) plimn!1n¡1=2
Pn
i=1[@ĝ(Ti; ¹PTi(Zi))=@p ¡ @g(Ti; P (Zi))=@p] ¢ R̂p(Zi) = 0;

(v) plimn!1n¡3=2
Pn
i=1

Pn
j=1[@ĝ(Ti; ¹PTi(Zi))=@p ¡ @g(Ti; P (Zi))=@p] ¢ Ãnp(Dj; Zj; Zi) = 0:

We verify these assumptions for the local polynomial regression estimator. Condition (i) is just

shown. We next show that the derivative of the local polynomial regression estimator converges

uniformly to the derivative of the limit of the local polynomial regression estimator. To our knowledge,

our investigation of the derivatives of the local polynomial regression estimator is new.

Theorem 4 If Assumptions 1{4, and 8 hold, then @ĝ(t; p)=@p is uniformly consistent for @g(t; p)=@p.

Proof. For convenience we drop the subscripts p, ¹p, and the argument x0 of Xp(x0), ^̄p(x0), ¯¤p(x0),

and W (x0) here so that X = Xp(x0), ^̄ = ^̄p(x0), ¯¤ = ¯¤p(x0), and W = W (x0). Also denote the

derivative with respect to the ¯rst argument of x0 by r. Note that X 0WY = X 0WX ^̄. Hence by the

chain rule,

r ^̄ = (X 0WX)¡1fr(X 0W )Y ¡ [r(X 0WX)] ^̄g

= (X 0WX)¡1fr(X 0W ) ¡ [r(X 0WX)](X 0WX)¡1X 0WgY

= (X 0WX)¡1fr(X 0W ) ¡ [r(X 0WX)](X 0WX)¡1X 0Wg(X¯¤ + r + "):
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Since

fr(X 0W ) ¡ [r(X 0WX)](X 0WX)¡1X 0WgX¯¤

= r(X 0W )X¯¤ ¡ r(X 0WX)¯¤

= f(rX 0)WX + X 0(rW )X ¡ (rX 0)WX ¡ X 0(rW )X ¡ X 0W (rX)g¯¤

= ¡X 0W (rX)¯¤;

we obtain

r ^̄ = ¡(X 0WX)¡1(X 0WrX)¯¤

+(X 0WX)¡1fr(X 0W ) ¡ [r(X 0WX)](X 0WX)¡1X 0Wgr

+(X 0WX)¡1fr(X 0W ) ¡ [r(X 0WX)](X 0WX)¡1X 0Wg":

Note that for s ¸ 1,

r(x ¡ x0)Q(s) = (r(x ¡ x0)(q1;:::;qd))q1+¢¢¢+qd=s

=
³
(x ¡ x0)(q1;:::;qd)1(q1 ¸ 1)

´
q1+¢¢¢+qd=s¡1

=
·³

(x ¡ x0)(q1;:::;qd)
´
q1+¢¢¢+qd=s¡1

0; :::; 0
¸
;

where the second equality follows from our convention on the order of the elements.
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Thus

X =

Ã

1 (x ¡ x0)Q(1) (x ¡ x0)Q(2) : : : (x ¡ x0)Q(p)
!

rX = ¡
Ã

0 1 0 : : : 0 (x ¡ x0)Q(1) 0 : : : 0 : : : (x ¡ x0)Q(p¡1) 0 : : : 0

!
:

Note that each column of rX is either a column of X or the column with all elements being 0. Hence

there exists a matrix J such that rX = ¡XJ , where J is a matrix that selects appropriate column

of X or the zero column. Without being more speci¯c about the exact form of J we can see that

¡(X 0WX)¡1(X 0WrX)¯¤ = J¯¤, and also that

(X 0WX)¡1fr(X 0W ) ¡ [r(X 0WX)](X 0WX)¡1X 0Wg

= (X 0WX)¡1f(rX 0)W + X 0(rW )

¡(rX 0)WX(X 0WX)¡1X 0W ¡ X 0(rW )X(X 0WX)¡1X 0W ¡ X 0W (rX)(X 0WX)¡1X 0Wg

= (X 0WX)¡1f¡J 0X 0W + X 0(rW )

+J 0X 0W ¡ X 0(rW )X(X 0WX)¡1X 0W + X 0WXJ(X 0WX)¡1X 0Wg

= (X 0WX)¡1fX 0(rW ) ¡ [X 0(rW )X](X 0WX)¡1X 0Wg + J(X 0WX)¡1X 0Wg:

Next, to simplify the last expression, we use some speci¯c properties of matrix J . The key properties

of J we use are that all elements of the ¯rst column are 0 and that the ¯rst element of the second

column of J is 1. That is, the ¯rst column of AJ is always the 0-vector, regardless of A and the

second column of AJ is the ¯rst column of A. Since the ¯rst column is chosen by J exactly once, the

preceding observations also imply that the ¯rst row of J is e2, where e2 = (0; 1; 0; : : : ; 0) if p ¸ 1 and
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0, if p = 0. Therefore

e1 ¢ r ^̄ = rm̂p(x) = e1 ¢ J¯¤

+
³
e1 ¢ (X 0WX)¡1f(X 0(rW ) ¡ [X 0(rW )X](X 0WX)¡1X 0Wg ¡ e2 ¢ X 0W

´
r

+
³
e1 ¢ (X 0WX)¡1f(X 0(rW ) ¡ [X 0(rW )X](X 0WX)¡1X 0Wg ¡ e2 ¢ X 0W

´
";

where e1 ¢ J¯¤ = rm(x). That the remaining two terms converge uniformly to zero can be shown

analogously as in Lemma 5.

Condition (iii) of Lemma 1 clearly holds under an i.i.d. assumption given the bias function obtained

in Theorem 3. In order to verify condition (iv) of the lemma we need to go back to the de¯ntion of

the residual terms and then use the same equicontinuity argument.

Finally condition (v) can be veri¯ed by invoking the equicontinuity lemma. This is where the

additional smoothness condition is required.

Armed with these results, we ¯nally turn to the proof of key Theorem 2.

A.3 Proof of Theorem 2.

Note ¯rst that, writing Îi = I(Xi 2 Ŝ),

N1=2
1

2
64

N¡1
1

P
i2I1

[Y1i ¡ ĝ(Xi)]Îi

N¡1
1

P
i2I1

Îi
¡ ES(Y1 ¡ Y0 j D = 1)

3
75

=
N¡1=2

1
P
i2I1

[Y1i ¡ ĝ(Xi) ¡ ES(Y1 ¡ Y0 j D = 1)]Îi

N¡1
1

P
i2I1

Îi
: (T-1)
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We ¯rst consider the numerator and then turn to the denominator of the expression. Note that

the numerator of the right-hand side of (T-1) is the sum of three terms (TR-1){(TR-3): writing

g1(x) = ES(Y1jD = 1; X = x),

(TR-1) = N¡1=2
1

X

i2I1
[Y1i ¡ g1(Xi)]Îi;

(TR-2) = N¡1=2
1

X

i2I1
f[g1(Xi) ¡ g(Xi)] ¡ ES(Y1 ¡ Y0jD = 1)gÎi;

(TR-3) = N¡1=2
1

X

i2I1
[g(Xi) ¡ ĝ(Xi)]Îi:

Terms (TR-1) and (TR-2) are analogous to terms we examined in Theorem 1. Term (TR-3) is the

additional term that arises from estimating g(x). However, the ¯rst two terms from Theorem 1 have

to be modi¯ed to allow for the trimming function introduced to control the impact of the estimation

error of ĝ(x).

Central limit theorems do not apply directly to the sums in (TR-1) and (TR-2) because the

trimming function depends on all data and this creates correlation across all i. Instead, writing

Ii = I(Xi 2 S), we show that these terms can be written as

(TR-1) = N¡1=2
1

X

i2I1
[Y1i ¡ g1(Xi)]Ii + op(1)

and

(TR-2) = N¡1=2
1

X

i2I1
f[g1(Xi) ¡ g(Xi)] ¡ ES(Y1 ¡ Y0jD = 1)gIi + op(1);

respectively. One can use the equicontinuity lemma and our assumption of p-nice trimming to show

the result for term (TR-1). The same method does not apply for term (TR-2), however. This is
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because when we take an indicator function ~Ii from I, where ~Ii 6= Ii, then

E[f[g1(Xi) ¡ g(Xi)] ¡ ES(Y1 ¡ Y0jD = 1)g~Ii] 6= 0:

It is necessary to recenter this expression to adjust for the bias that arises from using ~Ii.

In order to achieve this we observe that, writing ¢S(Xi) = [g1(Xi) ¡ g(Xi)] ¡ ES(Y1 ¡ Y0jD = 1),

N¡1=2
1

X

i2I1
¢S(Xi) ¢ Îi = N¡1=2

1

X

i2I1
¢S(Xi) ¢ Ii

+ N¡1=2
1

X

i2I1
¢S(Xi) ¢ [¾̂(Xi)]¡1 ¢ ~K¡

µf(Xi) ¡ q0
¾̂(Xi)

¶
[f̂(Xi) ¡ f(Xi)]Iff̂(Xi) > f(Xi)g

+ N¡1=2
1

X

i2I1
¢S(Xi) ¢ [¾̂(Xi)]¡1 ¢ ~K+

µf(Xi) ¡ q0
¾̂(Xi)

¶
[f̂(Xi) ¡ f(Xi)]Iff̂(Xi) · f(Xi)g;

where ¾̂(Xi) = jf̂(Xi) ¡ f(Xi)j, ~K¡(s) = 1 if ¡1 · s < 0 and 0 otherwise, and ~K+(s) = 1 if

0 · s < 1 and 0 otherwise. Since f̂(Xi) = (N0an)¡d
P
j2I0 K ((Xj ¡ Xi) =an), the latter two terms

can be expressed as double sums. We then apply an equicontinuity argument to the expressions

N¡1=2
1 (N0an)¡d

X

i2I1

X

j2I0
¢S(Xi) ¢ [¾̂(Xi)]¡1 ¢ ~K¡

µ
f(Xi) ¡ q0

¾̂(Xi)

¶

£ [K ((Xj ¡ Xi) =an) ¡ E fK ((Xj ¡ Xi) =an) jXig] Iff̂(Xi) > f(Xi)g

and

N¡1=2
1 (N0an)¡d

X

i2I1

X

j2I0
¢S(Xi) ¢ [¾̂(Xi)]¡1 ¢ ~K+

µf(Xi) ¡ q0
¾̂(Xi)

¶

£ [K ((Xj ¡ Xi) =an) ¡ E fK ((Xj ¡ Xi) =an) jXig] Iff̂(Xi) · f(Xi)g
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and control the bias by ¹p-smoothness of f(Xi).

Finally, term (TR-3) can be written as the sum of three terms

N¡1=2
1 N¡1

0

X

i2I1

X

j2I0
Ã0N0N1(Y0j ;Xj ;Xi) + N¡3=2

1

X

i2I1

X

j2I1
Ã1N0N1(Y0j; Xj; Xi);

(TR-3-1)

N¡1=2
1

X

i2I1
b̂g(Xi); (TR-3-2)

and

N¡1=2
1

X

i2I1
R̂g(Xi): (TR-3-3)

Terms (TR-3-2) and (TR-3-3) are op(1) by the de¯nition of asymptotic linearity of ĝ(Xi). Term (TR-

3-1) is a U-statistic and a central limit theorem can be obtained for it using the lemmas of Hoe®ding

(1948) and Powell, Stock, and Stoker (1989) and a two-sample extension of the projection lemma as

in Ser°ing (1980). We ¯rst present the Hoe®ding, Powell, Stock, and Stoker result:

Lemma 9 (H-P-S-S) Suppose fZigni=1 is i.i.d., UnÃn = (n¢(n¡1))¡1
P

ir Ãn(Zi; Zj), where Ãn(Zi; Zj) =

Ãn(Zj; Zi) and EfÃn(Zi; Zj)g = 0, and ÛnÃn = n¡1
Pn
i=1 2¢pn(Zi), where pn(Zi) = EfÃn(Zi; Zj)jZig.

If E
©
Ãn(Zi; Zj)2

ª
= o(n), then nE[(UnÃn ¡ ÛnÃn)2] = o(1). 2

We also make use of the results of Ser°ing (1980).

Lemma 10 (Ser°ing) Suppose fZ0;igi2I0 and fZ1;igi2I1 are independent and within each group

they are i.i.d., Un0;n1Ãn0;n1 = (n0 ¢ n1)¡1
P
i2I0

P
j2I1 Ãn0;n1(Z0i; Z1j), and EfÃn0;n1(Z0i; Z1j)g = 0,
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and Ûn0;n1Ãn0;n1 = n¡10
P
i2I0 p0n0;n1(Z0i) + n¡11

P
j2I1 p1n0;n1(Z1j), where for k = 0; 1; pkn0;n1(Zki) =

EfÃn0;n1(Z0i; Z1i)jZkig. If 0 < limn!1 n1=n0 = ´ < 1, where n = n0+n1 and E
©
Ãn0;n1(Z0i; Z1j)2

ª
=

o(n0) + o(n1), then nE[(Un0;n1Ãn0;n1 ¡ Ûn0;n1Ãn0;n1)2] = o(1). 2

In order to apply the lemmas to term (TR-3-1), note that it can be written as

N¡3=2
1

X

i2I1

X

j2I1;j6=i
Ã1N0N1(Y1j;Xj; Xi) (TR-3-1a)

+ N¡3=2
1

X

i2I1
Ã1N0N1(Y1i; Xi;Xi) (TR-3-1b)

+ N¡1=2
1 N¡1

0

X

i2I1

X

j2I0
Ã0N0N1(Y0j ;Xj ;Xi): (TR-3-1c)

Term (TR-3-1a) can be rewritten as N¡1=2
1

P
i2I1

P
j2I1;j6=i Ã

0
1N0N1

(Y1j ;Xj; Xi; Y1i;Xi;Xj) where

Ã0
1N0N1

(Y1j ;Xj; Xi;Y1i;Xi;Xj) = [Ã1N0N1(Y1j; Xj ;Xi) + Ã1N0N1(Y1i; Xi; Xj)]=2:

Thus by Lemma 9 and assumption (ii-a), term (TR-3-1a) is asymptotically equivalent to

N¡1=2
1

X

i2I1
EfÃ1N0N1(Y1i;Xi;Xj)jY1i;Xig:

By assumption (ii-a), term (TR-3-1b) is op(1). By Lemma 10 and assumption (ii-a), term (TR-3-1c)

is asymptotically equivalent to

N1=2
1 N¡1

0

X

j2I0
EfÃ0N0N1(Y0j ;Xj; Xi)jY0j; Xjg:
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Hence putting these three results together, term (TR-3-1) is asymptotically equivalent to

N¡1=2
1

X

i2I1
EfÃ1N0N1(Y1i; Xi; Xj)jY1i; Xig + N1=2

1 N¡1
0

X

j2I0
EfÃ0N0N1(Y0j; Xj ;Xi)jY0j ;Xjg:

Collecting all these results, we have established the asymptotic normality of the numerator.

We next examine the denominator of (T-1). Note that N¡1
1

P
i2I1 Îi = N¡1

1
P
i2I1 Ii+N¡1

1
P
i2I1(Îi¡

Ii). The ¯rst term on the right-hand side converges in probability to E(I) by the law of large num-

bers. To see that the second term is op(1), note that N¡1
1 jPi2I1(Îi ¡ Ii)j · N¡1

1
P
i2I1 jÎi ¡ Iij.

The Markov inequality implies for any " > 0, Pr
n
N¡1

1
P
i2I1 jÎi ¡ Iij > "

o
· E

n
jÎi ¡ Iij

o
=". Hence

assumption (ii-d) implies that the second term is op(1). This result, in conjunction with our result for

the denominator, proves Theorem 2.
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